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Deliverable requirements 
This section provides an overview of the location in this report in which the deliverable requirements 

can be found.  

This report is an English report which contains at least the following content: 

• Description of the synthetic datasets, statistical method and discharge model 

o A description of the raw synthetic dataset is provided in section 2.2.2. The approach 

from getting to the bias-corrected synthetic data and synthetic hydrological data is 

explained in section 2.3.1.  

o The statistical method that is used in this study to analyse extremes is provided in 

section 2.3.3. 

o A description of the discharge model used for the hydrological results of the combined 

effort of this study and the study by Couasnon et al. (2023) is provided in section 2.3.3. 

• A table with estimated return values for 1, 10, 100 and 1000 year return periods for the Meuse 

basin and the tributaries 

o Section 3.1.6 provides an overview of the required return values for the Meuse basin 

and 15 of its tributaries for a daily and hourly time window. Results of larger time 

windows are presented in Appendix 6.5. 

• Simulation of 80,000 years of daily weather with the weather generator based on the synthetic 

data 

o A brief overview of simulations with the weather generator based on the synthetic data 

for (more than) 80,000 in several tributaries of the Meuse basin is provided in section 

3.1.5. Information on the other tributaries is provided in Appendix 6.4. 

• A table with estimated return values for 10,000 and 100,000 year return periods for the Meuse 

basin and the tributaries 

o Section 3.1.6  also provides an overview of the 10,000 and 100,000 year return periods 

for the Meuse basin and 15 of its tributaries (based on the WG results). Results of larger 

time windows are also presented in Appendix 6.5. 

• Review information from other meteorological institutes with the report or as separate 

document 

o The review information is provided as a separate document. Reviews were performed 

by: 

▪ Dr. Alex J. Cannon (Environment and Climate Change Canada) 

▪ Dr. Michael B. Butts (Danish Meteorological Institute) 

▪ Dr. Peter Krahe (Bundesanstalt für Gewässerkunde (BFG))  

A summary of the report, both in English and in Dutch, will be provided in the following sections.  
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Summary 
In July 2021, unprecedented extreme precipitation led to enormous summer discharges that were never 

observed before, causing disastrous flood events in parts of the Meuse basin and stressing the 

importance of adequate extreme estimates for flood resilience. Conventional techniques for extreme 

discharge estimation, such as statistical extrapolation or the GRADE Weather Generator, have clear 

limitations which are attributed to the restricted length of the observational input data. This study 

introduces an alternative approach, in which long synthetic meteorological data spanning more than 

1000 years are employed in a hydrological model, generating a dataset from which large hydrological 

extremes can directly be derived. The main aim of this research is to evaluate the meteorological 

RACMO dataset for this specific purpose and to provide insight in the advantages of the synthetic 

RACMO dataset compared to observations, with focus on meteorology.  

The climatology of RACMO precipitation means and extremes in the Meuse basin and its tributaries 

compare very well with observations, making the dataset useful for hydrological computations. 

Furthermore, the extensive length of the RACMO dataset reveals a range of extreme values that was 

previously unanalysed. This provides new insight into the tail of the distribution of annual precipitation 

extremes, particularly in the curvature of GEV distributions which is described by the shape parameter. 

This shape parameter has a large influence on the value of the high extremes estimated by a GEV 

distribution and can better be estimated with the use of the longer RACMO dataset. 

The statistical uncertainty in the estimation of extreme precipitation is strongly reduced by the use of 

RACMO data: roughly a factor 4 for daily extremes and a factor 10 for hourly extremes. Further 

statistical analysis shows that the GEV shape parameter from observed precipitation is more robust with 

a long dataset. This is reflected by the spatial inconsistency of the shape parameter of observations and 

the more spatially consistent RACMO shape parameter. Furthermore, the shape parameter increases 

substantially by averaging over time and slightly when averaging in space.  

There is a clear distinction between the GEV distributions of summer and winter precipitation extremes, 

suggesting the existence of a double population. Depending on the time step (and therefore the annual 

dominance of summer or winter events), such a double population may influence the GEV of annual 

maxima. The existence of a double population, particularly in summer precipitation, is well-known in 

literature and is said to be related to dewpoint temperature. The existence of a double population is 

difficult to obtain from observations, but can have an enormous impact on the return values of summer 

extremes, such as the event of July 2021. The translation of summer extremes of precipitation into 

extreme discharges depends on the rainfall-runoff response of the considered catchment and on its 

catchment characteristics. 
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Samenvatting 
In juli 2021 was de Maas getuige van ongeëvenaarde tweedaagse neerslag met neerslagsommen die tot 

voorheen nog nooit gemeten waren. De enorme hoeveelheid water leidde tot catastrofale 

overstromingen in verschillende delen van het Maas stroomgebied en toonde aan dat een adequate 

schatting van zowel neerslag- als afvoerextremen essentieel is voor toekomstige weerbaarheid tegen 

dergelijke overstromingen. Conventionele technieken voor de schatting van extreme afvoeren, zoals 

statistiche extrapolatie en de GRADE neerslaggenerator, hebben duidelijke beperkingen gerelateerd aan 

de beperkte lengte van de observatie datasets die gebruikt worden als input. In dit onderzoek wordt een 

alternatieve methode geintroduceerd, waarin een hydrologisch model wordt gevoed met lange, 

synthetische meteorologische reeksen uit het RACMO klimaatmodel. Dit resulteert in lange 

hydrologische reeksen, waaruit hydrologische extremen kunnen worden bepaald. Het doel van deze 

studie is om het gebruik van de meteorologische RACMO dataset voor dit specifieke doeleinde te 

evalueren en om een inzicht te geven in de potentiële mogelijkheden van de RACMO dataset in 

vergelijking met observaties. 

De klimatologie van RACMO neerslaggemiddelden en extremen in het stroomgebied van de Maas en 

haar zijrivieren komen goed overeen met observaties. De dataset is dus uitstekend bruikbaar voor de 

hydrologische computaties. Daarnaast, geeft de lange synthetische dataset meer inzicht in de diepe 

staart van extreme neerslagen en afvoeren dan voorheen mogelijk was. Met name de kromming van 

GEV distributies, omschreven door de vorm parameter, kan middels de lange synthetische datasets 

beter worden ingeschat. Deze vorm parameter is zeer belangrijk bij het schatten van grote extremen in 

een GEV distributie. 

De statistische onzekerheid van extreme neerslag wordt sterk verminderd door het gebruik van de 

RACMO data: ongeveer een factor 4 voor dagelijkse extremen en een factor 10 voor uurlijkse extremen. 

Verdere statistische analyse toont aan dat de GEV vorm parameter een stuk robuuster is bij het gebruik 

van lange datasets dan de kortere lengte van observaties. Dit komt ook tot uiting in de ruimtelijke 

inconsistentie van de vorm parameter van observaties en de ruimtelijke consistentie van de RACMO 

vorm parameter. Daarnaast valt op dat de vorm parameter groter wordt naarmate gemiddeld wordt 

over een grotere tijdsperiode. 

Er is een duidelijk onderscheid tussen de GEV distributies van zomer en winter neerslagextremen, wat 

het bestaan van een dubbele populatie doet vermoeden. Afhankelijk van de tijdstap kan een dergelijke 

dubbele populatie invloed hebben op de GEV van jaarlijkse maxima. Het bestaan van een dubbele 

populatie, met name in de zomer, is een bekend fenomeen in de literatuur en wordt vaak gerelateerd 

aan dauwpunt temperatuur. Verder is het bestaan van een dubbele populatie moeilijk te concluderen 

uit observatiedata, terwijl het een grote impact kan hebben op de herhaaltijden van zomerextremen, 

zoals bijvoorbeeld in juli 2021. De vertaling van zomer neerslagextremen in afvoerextremen hangt af van 

de hydrologische response van het beschouwde stroomgebied en daarom op de karakteristieken van dit 

stroomgebied.     
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1. Introduction 
Between 12 and 15 July 2021, unprecedented extreme precipitation occurred in and around the Meuse 

basin. As a consequence, the Meuse river registered summer discharges up to 3260 m3/s that were 

never observed before. On several locations in the Meuse basin, precipitation accumulated up to more 

than 250 mm within 2 days, as depicted in the radar image in Figure 1.1a. The events resulted in severe 

flooding of multiple tributaries of the Meuse basin and exceptionally high water levels in the main river 

branch. The total impact of the floods in and around the Meuse basin was immense. More than 200 

casualties were reported and the total cost of the event is estimated to exceed 5 billion euros 

(Kreienkamp et al., 2021).  

The disastrous flood events of July 2021 raised questions on the potential extremity of floods in the 

Meuse basin and stressed the importance of competent flood protection against fluvial floodings. 

Information on the frequency of occurrence of extreme hydrological events is essential for such 

adequate flood protection: Return periods1 of extreme water levels are often used as an official 

guideline for flood protection. However, the return periods of interest are generally too high (e.g. 1000, 

10.000 years in the Netherlands as set in Appendix II of Article 2.2(1) of the Water Act) to be directly 

determined from observations, which are at most available for only an order of 100 years as shown for 

the Meuse basin in Figure 1.1b (Kwadijk et al., 2016). Elongation of timeseries using a paleohydrological 

approach is possible (e.g. De Niel et al., 2017), but this does not provide a complete and stationary 

dataset due to the climate signal over such a long time period. Therefore, an alternative approach for 

derivation of adequate extreme estimates that correspond to these high return periods of interest is a 

prerequisite for good flood protection.  

 

Figure 1.1 a) Radar image of the accumulation of precipitation over 2 days in the extreme July 2021 event in the Geul tributary 
of the Meuse b) Overview of the Annual Average Discharge in 1) the Meuse river and 2) several tributaries of the Meuse river. 
Measurements in the main river branch date back to approximately 1910, whereas measurements in the tributaries date back 
to 1930 at the latest (Kwadijk et al., 2016). 

 
1 The return period is defined as the inverse of the frequency of occurrence 
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1.1. State of the art for the Netherlands 
As previously mentioned, the short length of both meteorological and hydrological observational 

timeseries prevents direct coupling of hydrological extremes to corresponding return periods. Derivation 

of hydrological return values that exceed the length of observations is therefore often carried out by 

statistical extrapolation of the observations. The complication of statistical extrapolation arises from the 

(partly) arbitrary selection of the extrapolation distribution, which impacts estimation of extremes. 

Figure 1.2a demonstrates extrapolation of the E-OBS precipitation observation dataset (72-years) in a 

catchment of the Meuse basin, using two different, commonly used, extreme value distributions. The 

different distributions display huge difference for large return periods, which indicates estimation of 

high return values based on statistical extrapolation is prone to statistical error (e.g. Van Den brink et al., 

2003; Zeder et al., 2023). 

Another disadvantage of statistical extrapolation is that it is only applicable on locations with 

observational data. This complicates the estimation of extreme values at arbitrary locations without 

data in the considered (sub)-basins. Moreover, gaining any insight on hydrograph progression of 

extreme events is impossible with statistical extrapolation, as the method only results in a single value, 

and does not provide information of the days surrounding the extreme.   

 

Figure 1.2 a)  Visualisation of the influence of arbitrary choice of extrapolation technique on the provided return period with 72 
years of E-OBS data from the Vesdre catchment (a subcatchment in the Meuse basin). Note that precipitation amounts differ 
approximately 25 mm/day for a 100 year return value and 50 mm/day for a 1000 year return value b) Schematic representation 
of the resampling process. Reordering of the historical days allows multi-day values to take higher values than observed in the 
historical sequence. This does not hold for single-day values of the generated timeseries (Hegnauer et al., 2014). 

In order to address the limitations of statistical extrapolation in estimating discharge extremes, an 

alternative procedure called GRADE (Generator of Rainfall And Discharge Extremes) has been developed 

in the Netherlands by a consortium consisting of Rijkswaterstaat, Deltares and the KNMI (see section 

Fout! Verwijzingsbron niet gevonden.). In GRADE, a Weather Generator (WG) is used to generate 

extended meteorological timeseries (precipitation, temperature and radiation) of 50.000 years, by 

resampling observation data (Hegnauer et al., 2014). Note that there also exist other stochastic WG 

approaches (e.g. Nguyen et al., 2021), but due to familiarity the GRADE approach is further described in 

Met opmerkingen [LV1]: Je kan ook naar paleo kijken, 
zoals BRON, maar deze data is niet stationary door 
klimaatsignaal en niet volledig. 

Met opmerkingen [LV2]: There are other stochastic WG 
approaches (BRON), but we are familiar with GRADE, which 
is further described in this study. 
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this study. Although the daily extremes in the new synthetic dataset do not surpass those observed, the 

rearrangement of the dataset by resampling leads to larger multiday precipitation totals in the synthetic 

dataset compared to the original observations. This process has been visualized in Figure 1.2b 

(Hegnauer et al., 2014). Hydrological processes in large river basins typically exhibit a strong response to 

such large multi-day precipitation totals. After of the resampled timeseries in a hydrological model, 

feeding a hydrological model with the resampled timeseries will therefore contain several large 

discharge extremes that will exceed the observational dataset. In this way, GRADE enables the 

generation of largely extended timeseries (50.000 years) with increased discharge values, facilitating 

estimation of extreme return values directly from the timeseries and removing the need for statistical 

extrapolation. Another advantage is that the synthetic timeseries facilitates the creation of hydrographs 

for extreme events, supporting a more comprehensive analysis. Moreover, by employing an appropriate 

hydrological model, the GRADE procedure enables the identification of discharge extremes and their 

corresponding return values in unmonitored locations of the (sub)-basins. 

For a considerable period now, GRADE has been instrumental in Dutch policy-making regarding flood 

protection. It has demonstrated that the use of synthetic precipitation data to estimate discharge and 

precipitation extremes holds promise as an alternative for statistical extrapolation. Nevertheless, the 

existing implementation of GRADE has known limitations, some of which were revealed after application 

of the extreme events of July 2021.  

1.2. Problem statement 
GRADE faces limitations when it comes to accurately estimating extreme discharge in small sub-

catchments or tributaries of a basin. This is caused by the daily time step used in the WG, which is too 

coarse for adequate discharge estimation in these relatively small watersheds, with rainfall-runoff 

responses within a few hours, as observed during the flood events of July 2021. Simple calculations 

performed by Deltares also show fast rainfall runoff-responses in small catchments of the Meuse basin 

such as the Rur (0.31 days), the Geul (0.32 days) and the Vesdre (0.68 days). To accurately estimate 

discharge extremes in tributaries like these, a sub-daily time step is required, which is not (yet) 

facilitated in the GRADE procedure. Furthermore, it is worth repeating that the weather generator in 

GRADE only generates higher precipitation events when considering multi-day precipitation sums, but 

not for single-day values. Although the length of the observational dataset has been largely elongated by 

the resampling process, single-day values in the new sequence will never surpass the maximum value of 

the observational time series, which has been depicted in Figure 1.3a. The meteorological absence of 

daily extremes has consequences for the hydrological response to single-day precipitation. Catchments 

with hydrological responses to single-day or sub-daily precipitation will therefore likely have 

underestimated hydrological extremes when applying the GRADE procedure.     

A similar effect can be detected for low multi-day precipitation totals. Resampling in GRADE is 

constrained by the values present in the original dataset, which means that the maximum values in the 

synthetic timeseries will never surpass a multiple (corresponding to the multi-day sum) of the maximum 

precipitation value in the original dataset. In simpler terms, the n-day sum generated by the weather 

generator can never exceed n times the maximum daily precipitation value found in the historical 

record. Furthermore, as the resampling approaches the multiple of the observational maximum 

(corresponding to the multi-day sum), the occurrence of maxima close to that value becomes 

increasingly rare. Consequently, for low multi-day precipitation totals, the synthetic timeseries may not 
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adequately capture extremes with high return periods, potentially leading to underestimation. As 

illustrated in Figure 1.3a, the underestimation becomes less significant (and shifts towards higher return 

levels) as the multi-day sum increases, which is likely related to the increased number of potential 

combinations. The relationship between precipitation and discharge implies that the inaccuracies 

present in the synthetic meteorological dataset will also impact the synthetic hydrological dataset. In 

large river basins such as the Rhine basin, where the hydrological response time to precipitation events 

is considerable and discharge extremes are predominantly influenced by large multi-day events, the 

prescribed shortcomings are not expected to have a significant effect for the return periods that are 

generally considered in policy-making. However, in smaller basins or tributaries that have a faster 

response to rainfall events (e.g., as observed in the events of July 2021), the underestimation of high 

precipitation extremes potentially leads to unrealistic representations of discharge. This may in turn 

hamper the accurate analysis of hydrological extremes.  

 

Figure 1.3 a) Visualization of the annual extremes for both the observations and the WG result for multiple multi-day sums in 
the Meuse basin. Low multi-day precipitation extremes show probable underestimation. This is less pronounced for high multi-
day precipitation extremes b) Overshoot of precipitation extremes due to inaccuracies in the WG resampling technique. The 
figure shows the WG result before and after addition of the July 2021 extreme. 

Moreover, the occasional occurrence of an extremely rare event in the observational dataset, with an 

expected return period much larger than the length of the dataset, results in unrealistic meteorological 

patterns in the synthetic timeseries. This issue becomes apparent when such an extreme event, like the 

one observed in July 2021, is added to the observational dataset. The current implementation of the 

weather generator faces difficulties in resampling events other than the one selected for the previous 

day when the extreme event is an outlier in the observational timeseries. This is due to the lack of other 

extremes with a similar magnitude to provide reference points for resampling. Consequently, the 

extreme event is overrepresented in the synthetic timeseries, leading to an artificial inflation of its 

occurrence and an overestimation of high multi-day extremes (see Figure 1.3b).  

Furthermore, it is important to note that the weather generator used in GRADE does not simulate 

climate change, since it relies on resampling from past observations. However, numerous studies have 

indicated that precipitation events will undergo rapid changes due to climate change (e.g. O’Gorman, 

2015). Consequently, the meteorological- and discharge events generated by GRADE are valid for the 
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historical climate but may not accurately represent future climates. Given that flood protection requires 

careful planning, it is crucial to have insights into future hydrological and meteorological extremes for 

informed decision-making.  

Although GRADE has demonstrated the potential of using generated timeseries for estimating discharge 

and precipitation extremes as a promising alternative to statistical extrapolation, its current operation is 

not without flaws, primarily due to the limited length of the observational timeseries. While application 

on larger hydrological entities like the entire Rhine basin may be less affected by the limitations of the 

weather generator, it can lead to inaccurate estimates of discharge return values in smaller tributaries. 

Therefore, to improve the estimation of meteorological and hydrological return values for these 

situations, a different approach is required.  

1.3. Synthetic observations 
Both statistical extrapolation and GRADE have demonstrated limitations due to the reliance on the short 

length of the observational datasets. Therefore, there is a strong demand for long observational 

datasets in these applications, which unfortunately do not exist.   

As an alternative approach, use of synthetic timeseries generated by climate models can be considered 

to estimate meteorological and hydrological extremes. In the context of the KNMI'23 climate scenarios, 

the RACMO climate model forced by EC-Earth has generated over 1000 years of meteorological data 

(see section Fout! Verwijzingsbron niet gevonden.) representative for current climate after a bias 

correction. This synthetic dataset, either in its raw form or extended by the weather generator, can 

serve as observational input for hydrological and hydrodynamic models. This enables the generation of 

large timeseries of hydrological data that represent the current climate.   

Use of the hydrological timeseries derived from the synthetic climate model data enables direct 

determination of extremes with return periods up to approximately 1000 years. This approach bypasses 

the methodological flaws associated with statistical extrapolation or the GRADE procedure. 

Furthermore, using the climate model data in the weather generator will likely shift the methodological 

flaws in extreme estimation towards larger return periods, which implies that higher extremes can be 

considered more reliable.  

An additional advantage is that the climate model runs also contain meteorological data for future 

climate scenarios. As such, the approach of using a synthetic dataset to estimate hydrological extremes 

may also be extended for future climates, which can be essential information in policy making. Note that 

estimation of future extremes falls outside the scope of this research.   

Another advantage of the RACMO model is that it generates meteorological data at an hourly time step, 

enabling generation of hydrological extremes at an hourly time step as well. This is crucial for the 

estimation of extremes in smaller basins or tributaries of the Meuse basin due to their fast rainfall-

runoff response.   

1.4. Research Goal 
Using the synthetic meteorological dataset (like done in e.g. Van Den Brink et al., 2005) from the 

RACMO climate model provides a promising alternative for conventional techniques for estimation of 

meteorological and hydrological extremes due to the length of the dataset, its fine temporal resolution 

and its potential for analysis of future extremes. Nevertheless, it is crucial to acknowledge that the 
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pseudo-observations of the synthetic dataset have uncertain quality and must be investigated and 

compared with real observations. Hence, the objective of this study is to introduce the methodology of 

using synthetic data for estimating meteorological and hydrological extremes in basins of different 

shapes and sizes, to evaluate the quality of the meteorological RACMO dataset for this specific purpose 

and to provide insight in the additional potential of the synthetic RACMO dataset compared to 

observations. The focus in this report is on meteorological extremes. The hydrological follow-up is 

presented in a separate report by Couasnon et al. (2023). 
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2. Methodology 
This research aims to present and evaluate a new approach for estimating discharge and rainfall 

extremes through the use of long synthetic time series produced by climate models, possibly after bias-

correction (see e.g. Sunyer et al. (2012) for an overview of correction methods). The method is applied 

and tested in the Meuse basin and its tributaries, which will be introduced in Section 2.1. Following that, 

the different datasets used in this research are presented. In the final section, a more in-depth 

explanation of the methodology will be provided, including an explanation of the bias correction that is 

used to correct the synthetic data, the tests that are required to assess data quality and a brief overview 

of the hydrological follow up and its required meteorological variables.   

2.1.  Study area 
The Meuse and its tributaries were subject to extreme floodings after the July 2021 precipitation events, 

proving the great significance of accurate extreme value estimates in this basin. Therefore, the Meuse 

river and its tributaries serve as an ideal setting to test the proposed approach. Furthermore, the social 

and economic impact caused by the floods has created good momentum for interregional collaboration 

in managing flood extremes. This research is conducted as part of the EMFloodresilience project, funded 

by the European Union, which aims to promote such interregional cooperation in and around the Meuse 

basin. In context of this collaboration, the focus of this research is specifically on the Meuse basin.  

The Meuse originates in France and flows through Belgium and the Netherlands. Its basin, depicted in 

Figure 2.1a and b, also covers small parts of Germany and Luxembourg, with a few tributaries that feed 

the main river. The entire basin covers approximately 36,000 km2. The Meuse basin exhibits significant 

variation in elevation, as it incorporates parts of rugged Ardennes and Eiffel and the gently sloping 

Lorraine region. Elevation differences throughout the basin can have an effect on meteorology and lead 

to varying annual precipitation totals around the basin, as shown in Figure 2.1a. Assessment of the 

synthetic timeseries is therefore required at the sub-basin level. Furthermore, the distinct topographical 

features result in varying response times of hydrology to rainfall in the different sub-basins, making 

investigation on the sub-basin scale essential from hydrological perspective as well. Hence, an analysis 

of the synthetic model data is executed on both the basin-scale and various sub-basins of the Meuse. 

Quality control on the sub-catchment scale also enables an assessment of the representativeness of the 

synthetic precipitation dataset across various spatial scales and it offers the opportunity to evaluate the 

competence of the hydrological response in catchments of different sizes, e.g. testing the significance of 

the temporal frequency of the synthetic data.  

In this research, the sub-basins considered are the ones defined by the hydrological HBV model in 

GRADE. It is important to note that the hydrological computations in this study are not carried out by 

the HBV model but another hydrological model is used (see section 2.3.2). Table 1 provides an overview 

of the HBV tributaries. The index refers to the catchment number, as presented in Figure 2.1a.  

Table 2.1 HBV-catchments and corresponding catchment area 

Nr. Name Size (km2) Nr.  Name Size (km2) 

135 Meuse at St Mihiel 2591 143 Sambre 2741 

136 Chiers 2196 144 Ourthe 1591 

137 Meuse from St Mihiel-Stenay 1292 145 Ambleve 1043 

138 Meuse from Stenay-Chooz 2247 146 Vesdre 679 
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139 Semois 1212 147 Mehaigne 340 

140 Viroin 530 148 Meuse from Namur-Liege 1437 

141 Meuse from Chooz-Namur 1107 149 Jeker 455 

142 Lesse 1304    

 
The results of this study will be predominantly demonstrated through visualization of four catchments 

with varying sizes and locations, as depicted in Figure 2.1b. In addition to the three highlighted 

catchments in Table 1, the entire Meuse basin upstream of Borgharen will also be considered. Additional 

or other catchments may be used to portray specific results more clearly. All the results will be 

visualized for all catchments in the Appendices.    

 

Figure 2.1 Overview of the Meuse basin in with a) different precipitation totals in different regions of the basin and their HBV 
catchment numbers and b) the outline of the catchments generally used for visualization of the results in this study. Note that 
these catchments have different locations and sizes. Numbers of the catchments are 135 – St. Mihiel (green), 142 – Lesse 
(blue), 146 – Vesdre (purple), all numbered catchments – Borgharen (red). 

2.2. Data 
There are two types of data that are considered in this study: The observational dataset on the one hand 

and the synthetic data generated by climate models on the other hand. The specific datasets that are 

used in this study are provided below.    
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2.2.1. Observations 
The function of observations in this study is two-fold. On the one hand, they can be used to assess the 

quality of the synthetic datasets by comparing various indicators of the two datasets. On the other hand, 

observations are essential to correct model-induced biases present in the synthetic dataset (refer to 

Section 2.3.1 for more details about bias correction). In this study, the E-OBS dataset is used for both 

objectives. However, E-OBS data are only available with a daily time step, whereas the fast rainfall-

runoff response in small sub-basins requires a dataset with a finer temporal resolution. Therefore, the 

genRE-based dataset for the Meuse basin is also used in this study, specifically for evaluation of the sub-

daily synthetic data.      

E-OBS dataset 

E-OBS (Cornes et al., 2018) is a gridded observational dataset containing precipitation, temperature, sea 

level pressure, global radiation, wind speed and relative humidity data which covers much of Europe. 

The data is provided with a spatial resolution of 0.1 degrees, which is similar to approximately 11x11 

km2. For the relevant variables in this study, the E-OBS dataset is available from 1 January 1950 to 

present. The dataset is based on weather stations provided by the ECA&D and 84 other participating 

institutions. The stations used for the E-OBS dataset have been visualised in Figure 2.2 (Cornes et al., 

2018). New versions of E-OBS are released twice a year, with updated timeseries and in some cases, new 

stations added. The version used in this study is E-OBSv26e, but for convenience the dataset will be 

addressed as E-OBS throughout the report. A comprehensive description of the E-OBS dataset, is found 

in Cornes et al. (2018). 

 

Figure 2.2 Overview of the stations in the Meuse basin used to create the E-OBS product (Cornes et al., 2018) 

GenRE-based Meuse dataset 
Van Osnabrugge et al. (2017) designed the GenRE approach to extend gridded climatological 

precipitation datasets in near-real time, which is required for e.g. operational flood forecasting and 

drought monitoring. Scaled by a climatological weighting factor based on monthly precipitation grids 

derived from climatological observation sets (such as E-OBS), sparse hourly precipitation data are 
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interpolated to a gridded dataset using inverse distance squared weighting. In other words, sparse 

hourly measurements from rain gauges are spatially distributed and scaled by the monthly climatology 

of a grid cell relative to the grid cell of the observation station. Bouaziz et al. (2020) then used the GenRE 

approach to interpolate hourly precipitation data in the Meuse basin. Hourly precipitation data from 

stations of Meteo France and Service public de Wallonie were spatially interpolated and scaled using the 

E-OBS gridded dataset. Note that the GenRE-based Meuse dataset is thus not completely independent 

of the E-OBS dataset. The GenRE based dataset for the Meuse basin spans from 2005 to 2017 and has a 

gridded resolution of approximately 1x1 km2.    

2.2.2. Synthetic data 
In this study the synthetic timeseries is considered as the meteorological output of the RACMO climate 

model. In this subsection, the general underlying principles of climate models are first explained, after 

which the specifics of the regional climate model RACMO and its meteorological output are described.  

Climate models  
General circulation models (GCM’s) are a discrete representation of the earth’s climate system. They 

simulate the transfer of energy and materials through the system of oceans, atmosphere and land, by 

using complex mathematical descriptions. The entire system is discretized in a three-dimensional grid 

around the earth and fluxes of energy and material can be exchanged between grid cells in all different 

directions, for every discrete model time step. The grid size and time step determine respectively the 

spatial and temporal resolution of the climate model. Note that increasing either of these resolutions 

will make the model computationally more expensive (e.g. increase the computation time). Given the 

present computational power of (super)computers, GCM’s generally run at resolutions with an order of 

100x100 km2.   

Regional Climate models (RCM's) cover a much smaller spatial domain (e.g. a continent). 
Therefore, the spatial grid of climate models can be much finer (e.g. an order of 10x10 km2), 
implying they can show climatic behaviour on a much smaller scale and generally with higher 
accuracy. Note that climate systems depend on global processes, which is the reason that 
RCM’s are driven by GCM’s at their boundaries. In this research, the output of the RCM RACMO, 
forced by the GCM EC-EARTH, is used. A more in-depth description of these models and the 
resulting dataset is provided in the next section. The spatial domain of the RACMO dataset is 
provided in Figure 2.3.   
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Figure 2.3 Overview of the RACMO domain (Van Dorland et al., 2023) 

RACMO dataset  
The GCM and RCM used in this study are respectively EC-EARTH3 (Döscher et al., 2022) and RACMO 

(Van Meijgaard et al., 2008). In the context of the KNMI-23 climate scenario’s (Van Dorland et al., 2023) 

an ensemble of 16 climate simulations were generated with EC-EARTH3 with a resolution of 80x80 km2 

and then dynamically downscaled to a 12x12 km2 grid covering Europe using RACMO. The variation 

between the ensemble members is achieved by initialising each member from a different part of an 

1800 year long pre-industrial EC-EARTH3 run. Continuously, the 16 runs are forced with historical CMIP6 

(intercomparison of climate models) forcing. This results in 16 different runs for comparable, historical 

climate, which can be used to distinguish the climate signal from natural climatic variability. At the end 

of model year 2014, the 16 historical runs are continued for SSP1.26, SSP2.45 and SSP5.85, up to the 

year 2165, providing climatic information for different greenhouse gas emission scenarios. Note that the 

ECEARTH3 runs have only been downscaled between model years 1950 and 2120. The primary objective 

of this research is to analyse extreme discharges with synthetic data in the present climate. Therefore, 

the meteorological model outputs from 1950 to 2014 for all 16 ensemble members have been used as 

the source data in this study, providing a dataset spanning a total of 1040 years for all relevant 

meteorological variables. Precipitation data is accessible at an hourly time scale, whereas the other 

meteorological variables are available at 3-hourly time scale.   

2.3. Method 
This section will provide a short elaboration of the approach to use synthetic data for extreme 

estimation. Apart from a description of the approach, synthetic data will be intercompared with 

observations, the bias correction used to account for systematic biases in the model is explained and an 

overview of the hydrological model for derivation of hydrological timeseries is provided. The section is 

finalized with a concise overview of the extreme value theory that is used in this report.    

2.3.1. Approach 
The approach of this research is an alternative of the prementioned GRADE approach. The approach of 

GRADE and the two alternative approaches that are considered in this study have been schematized in 

Figure 2.3a, b and c. As explained in Section 1.1, GRADE uses the WG to create a long synthetic 
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meteorological dataset. All relevant meteorological variables are subsequently used as input of a 

hydrological model and hydrodynamic model to eventually perform a frequency analysis based on the 

synthetic timeseries of 50,000 years. The advantage is that all return values of interest can be directly 

determined from the timeseries and no statistical extrapolation is required. This approach is therefore 

not prone to the arbitrary choice of extrapolation algorithm or statistical errors.    

However, the major disadvantage of GRADE and in particular the WG, is that the resampling procedure 

exhibits methodical limitations. On the one hand, an overshoot of extremes (see section 1.2) can occur 

due to overpresence of a randomly occurring exceptionally extreme observation in the resampled 

precipitation dataset (see Van Voorst & Van Den Brink, 2022). On the other hand, resampling of the 

short dataset can lead to underestimation of high extremes for small multi-day precipitation totals due 

to the limits set by the resampling technique (see section 1.2) (Van Voorst & Van Den Brink, 2022). 

Furthermore, the WG is limited to the production of daily maxima, whereas sub-daily data (particularly 

precipitation extremes) are essential in small basins where the rainfall-runoff response is high. In 

addition, none of the conventional techniques incorporates climatic effects, which is essential 

information for flood protection measures against future flood events.   

To account for several of the limitations, the GRADE procedure can be adapted by utilizing the synthetic 

timeseries of the RACMO climate model. Figure 2.3b depicts the first alternative, in which the WG is 

entirely bypassed. Instead, the synthetic RACMO timeseries are directly passed to the hydrological 

model. In this approach, the benefits of the large timeseries remain intact, while the limitations of the 

WG are eliminated. Return values can be directly determined from the timeseries up to approximately 

100 years (the uncertainty of 1000 year return values from a timeseries of similar length is too high). To 

obtain larger extremes, statistical extrapolation can still be employed with less uncertainty compared to 

its application on short observational datasets. 
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Figure 2.4 Three alternative approaches of using synthetic data being a) the original GRADE approach, b) the first alternative in 
which synthetic data are directly passed to the hydrological model, c) the second alternative in which synthetic RACMO data 
are used in  

The second alternative (Figure 2.3c) is the utilization of the synthetic RACMO timeseries as an input of 

the WG. This leads to a longer hydrological timeseries than the first alternative. Besides, the to be 

resampled dataset is at least an order 10 times larger than the observational sequence, reducing the 

methodical error that causes over- or underestimation of the extremes. Application of the WG on the 

synthetic dataset will therefore provide high extremes with less uncertainty than the original WG and 

does not require statistical extrapolation to estimate extremes larger than 1000 years. However, the 

methodical flaws of the resampling procedure may still emerge for higher return periods.   

The RACMO model provides meteorological data with a sub-daily frequency. Use of these data in the 

first described alternative allows for the analysis of hydrological responses to high, short-lasting 

precipitation extremes, particularly relevant in fast-responding basins. Note that the WG currently does 

not take hourly input. Return values on the sub-daily time scale can therefore only be estimated with 

the first alternative of the GRADE procedure. Furthermore, climate change can be incorporated in the 

GCM and RCM model runs. Both suggested GRADE alternatives can therefore potentially be applied for 

estimation of future extremes. However, this study first evaluates the use of climate model data to 

estimate extremes with historical data. Provided that results are satisfactory, evaluation of its 

application on future extremes is recommended for further research. 
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This study primarily focusses on the first GRADE alternative (b), including the impacts the longer 

timeseries has on the uncertainty of statistical extrapolation. The results of the second alternative will 

also be briefly discussed. It is important to note that the scope of this study ends with the analysis of the 

synthetic meteorological dataset. The discussion of hydrological results will be covered in Couasnon et 

al. (2023).. Section 2.3.2 does provide an overview of the hydrological model used for hydrological 

computation, including the required meteorological variables.   

Comparing observations with synthetic data 
The RACMO dataset differs from observations in several other ways than previously mentioned. To start 

with, the spatial density of the RACMO dataset is higher than that of official weather stations and the 

RACMO dataset provides a homogeneous distribution of data while the distribution of observational 

data is heterogeneous. Weather stations are generally more sparsely and not uniformly distributed over 

the spatial domain, whereas the climate model provides an equally representative value for every grid 

cell. Besides, the climate model is not susceptible to trends and inhomogeneities, such as changes in the 

environment, measurement equipment and methods. In general, RACMO offers a wide range of climate 

variables, with a large timeseries length, at relatively high spatial and temporal resolution. Observations 

will often fall short on at least one, or multiple of these variables. For instance, meteorological 

observations with an hourly time step are available for fewer variables, for a shorter time period and 

from fewer locations. Lastly, observational data generally originate from many different data sources, 

making acquisition challenging compared to the instantly available RACMO dataset.   

On the other hand, observational data also have several benefits over synthetic data. Firstly, 

observations are generally considered as a factual representation of reality, providing an accurate 

description of climatology. The capability of climate model datasets to accurately describe climatology is 

unknown and topic of investigation in this research. It should be noted that observational datasets from 

different sources may yield varied results and that even for observations, there is no absolute truth. 

Secondly, the RACMO model may have difficulties in capturing meteorological processes that require a 

fine grid resolution (e.g. convection (Lucas-Picher et al., 2021)). Observation stations can provide direct 

measurements in which these processes are better represented.  

The preceding comparison showed there are numerous advantages of the RACMO dataset relative to 

observations when regarding estimation of extremes. However, the quality of the RACMO dataset for 

this application is still unexplored and therefore one of the main focal points of this research. To 

improve the quality of the RACMO dataset, the first step is to account for systematic biases induced by 

the model. An overview of the bias correction applied to the synthetic RACMO data is provided in 

section 2.3.1. 

Bias correction 
Both GCMs and RCMs are prone to biases (e.g. Palmer et al., 2023). Sources of such model bias are e.g. 

discretisation of continuous environmental processes into model grids or simplifications of physical and 

thermodynamic processes (e.g. convection, surface roughness, orography). These biases have an effect 

on the model result, which needs a correction to compensate for these systematic biases. Over the 

years, different approaches have been developed to correct for model bias and reduce model errors. 

One of the techniques that has become increasingly popular is the quantile mapping (QM) technique 

(Themeßl, 2011; Cannon et al., 2015).   
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In QM, bias is corrected by comparing the quantiles of raw model output to observations. The method is 

based on the assumption that a climate model can more accurately project the rank of a variable of 

interest, than its actual values. Following this assumption, both the observations and model output are 

divided into different quantiles and using a quantile-depending correction function, model simulations 

are mapped onto the observation. This procedure has schematically visualised in Figure 2.4 (Kim et al., 

2016), in which both the model output and observations are presented by a probability density function 

(pdf) and a cumulative distribution function (cdf).   

 

Figure 2.5 Schematic representation of the quantile mapping procedure for a bias correction 

Provided that the observations and model results consist of an equal number of data points and the 

number of quantiles is to be chosen equal to the number of data points, the model output cdf will 

perfectly fit onto the observational cdf. However, such an approach would likely lead to 

overparameterisation. Besides, observations and model results are generally not equal in length. 

Therefore, both datasets are distributed into a limited number of quantiles. In this study, the quantiles 

are bound by the percentiles used for the KNMI climate scenario’s (Van Dorland et al., 2023): quantile 

intervals of 0.05, with extra quantiles in the tails. The 0.99, 0.999 and 0.9999 quantiles are not directly 

calculated, but extrapolated from the 0.90 and 0.95 quantiles. For precipitation, we use the exponential 

distribution for this extrapolation,, and for the temperature, the Gaussian distribution is applied. In this 

way, stochastic uncertainty in the extreme quantiles is reduced.  

The model result value corresponding to every percentile is mapped onto the observed value for the 

similar percentile. All model values between the percentiles are then interpolated between the new 

corrected values. This way, the cdf of the bias-corrected model is not entirely identical to the cdf of the 

observations, but only approaches it. The application of the QM bias correction in this research is similar 

to its application for the KNMI climate scenarios, which can be referred to for a more detailed 

description (report to be published on 9 October 2023). However, in this study precipitation quantiles 

higher than 0.99 have not been corrected, to avoid overcorrection of the large extremes.   

It is essential for this study that the corrected model data are representative for current climate. This 

requires a stationary dataset without any climate signal, which requires detrending of the model 

dataset. The detrending process is explained in Figure 2.6. The QM correction is applied to subsets of 10 

years of the raw model data (1950-1959, 1960—1969, etc.). Because there are 16 ensemble members in 
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the dataset that all cover the period 1950-2014, the subsets all contain 160 years of model data (except 

the 2010-2014 set, which contains 80 years). All subsets are corrected and detrended by mapping them 

onto the most recent part of the E-OBS dataset (1991-2020), making them most representative for 

current climate.  Additionally, the QM correction is applied to every calendar month, because both 

magnitude and direction of the bias correction can vary seasonally. On average, there are approximately 

160x30 (4800) raw model data points for every month for every grid point in every subset of 10 years. 

The observations contain approximately 30x30 (900) points per month. Note that the percentiles of the 

observational dataset are determined on the original observational grids and subsequently regridded 

towards the RACMO grid.  

 

Figure 2.6 Schematic representation of the detrending procedure applied in this study. 

The QM correction applied in this study is limited to the daily time scale, because E-OBS has no data 

available at higher frequency. Furthermore, the GenRE dataset for the Meuse basin is not long enough 

to use for a bias correction of the sub-daily model output. Since sub-daily data are a relevant part of this 

research, the sub-daily precipitation data are corrected by multiplication with the ratio of the corrected 

daily data and the raw daily data of the day of the specific event. For hourly data, this means that all 24 

hours in a certain day have been multiplied with the same factor.   

2.3.2. Hydrological model 
To derive discharge extremes, the synthetic meteorological data must be transformed into a 

hydrological timeseries by application in a hydrological model. A gridded model is required for analysis 

of hydrological extremes on a small spatial scale, which is a scale that proved to be highly prone to 

flooding in the events of July 2021. This is why the gridded wflow model is used as hydrological follow 

up of this study. Although hydrological computations and analysis are not part of this study, in order to 

provide a complete overview of the method, a brief description of the wflow model is provided in this 

Section. The model description is directly obtained from Bouaziz and Buitink (2022). For a more 

comprehensive overview of the model refer to van Verseveld (2022).   

The distributed hydrological modelling software wflow is a free and open source distributed hydrological 

modelling platform developed by Deltares and targeted to perform hydrological simulations using GIS 
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raster data, often based on global datasets (van Verseveld, 2022). The model calculates all hydrological 

fluxes at any given point in the model at a given time step, based on physical parameters and 

meteorological input data.   

Different hydrological concepts exist within the wflow framework, including the wflow_sbm model 

concept and the wflow_flextopo concept. Within the wflow_sbm concept, alternative options exist to 

compute the river and land routing, either based on the kinematic wave or the local inertial 

approximation. The different concepts are described below.  

Wflow processes 
The wflow_sbm model is a physically-based distributed model. It includes a representation of dominant 

vertical hydrological processes for glaciers, snow, evaporation (interception, soil evaporation, open 

water evaporation, transpiration), infiltration depending on the fraction of paved and unpaved area, 

capillary rise, transfer of water through different layers in the unsaturated part of the soil and transfer 

of water from the unsaturated to the saturated store. When the soil is saturated or when precipitation 

exceeds the infiltration capacity, overland flow is generated. The main processes are schematized 

in Figure 2.7 and a detailed description of each process is available in van Verseveld et al. (2022) and in 

the online documentation (https://deltares.github.io/Wflow.jl/dev/). The code is open source and 

available on GitHub (https://github.com/Deltares/Wflow.jl). 

 

Figure 2.7 Schematic representation of the wflow_sbm concept  

Water in the river, the subsurface and on land is transported downslope through the catchment along 

the river network. The kinematic wave is used for lateral subsurface flow. Several options are possible 

for the lateral processes of river and overland flow, including kinematic wave or local inertial 

approximation. For a more detailed description of the lateral processes, please refer to Bouaziz and 

Buitink (2022) and van Verseveld et al. (2022).     

https://deltares.github.io/Wflow.jl/dev/
https://github.com/Deltares/Wflow.jl
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Meteorological input variables 
The meteorological input required to run the wflow model consists of the following variables: 

• Precipitation (P) 

• Temperature (T) 

• Potential evapotranspiration (PET) 

The output of the RACMO model runs provides data for all variables but potential evapotranspiration. 

The latter is approximated with the Makkink evaporation formula (Makkink, 1957), which is proven in 

the Netherlands and often used for discharge modelling in the Meuse, using temperature and radiation 

data from the model as input variables. Precipitation is available up to an hourly time scale. The other 

meteorological variables are available up to a 3-hourly timescale and are downscaled to an hourly 

timestep with linear interpolation after the bias correction.    

All meteorological variables have been bias-corrected using the QM approach, like described in section 

2.3.1. As the E-OBS dataset has a daily timestep, the correction has been applied to the daily dataset. A 

3-hourly representation of the bias-correction for R and MSLP is obtained by scaling the sub-daily value 

with the ratio of the corrected daily data and the raw daily data. For 3-hourly data, this means that 8 

timesteps in a day are scaled with a similar factor.   

To derive a correction for 3-hourly temperature, a slightly different approach is used. Instead of using 

mean T, sub-daily T is scaled using the difference between raw and corrected minimum and maximum 

temperatures following Equation 2.1.  

 T3h,n  =
(T3h,o − T𝑑,min,o)(T𝑑,max,n − T𝑑,min,n)

T𝑑,max,o − T𝑑,min,o
+ T𝑑,min,n  Equation 2.1 

 
Note that this approach may lead to small discrepancies of mean daily temperature between the daily 

and hourly dataset. However, these differences are too small to influence the discharges.  

Furthermore, Makkink PET is an empirical formula which is generally applicable to daily precipitation. To 

make sure annual average PET is similar for the daily and sub-daily datasets, the sub-daily PET dataset 

has been scaled with the total annual PET ratio between the daily and the sub-daily dataset.   

For adequate functioning of the hydrological model, an adequate representation of the extremes of 

precipitation is the most important. Precipitation extremes will therefore be mainly considered in the 

results of this study. For the other variables, a decent representation of their distribution throughout 

the year is sufficient, which is presented in the annual cycles of Section 3.1.5 

2.3.3. Extreme value analysis 
The main focus of this research is to evaluate the quality and additional value of the synthetic RACMO 

timeseries for extreme estimation. Extreme value analysis, with its primary focus on the tail of the 

precipitation distribution, therefore plays an important role in this research. Two approaches for 

extreme value analysis are generally considered. Firstly, the peak over threshold method (POT), in which 

the peaks above a certain threshold are extracted from a continuous timeseries. For the second 

approach, the timeseries is distributed in blocks (years or seasons in this study) and the extreme value of 

every block is derived. The latter approach is used in this study. For a more comprehensive 

consideration of block maxima and peak over threshold, please refer to the (Van Den Brink et al., 2005).  
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In an extreme value analysis using annual extremes, a timeseries of annual maxima is obtained from the 

dataset. After sorting the annual extremes, the rank of each of the maxima then provides an indication 

of its return period. To estimate the probability of an extreme with rank n in dataset length m can be 

determined based on the probability plotting position formula as defined in Equation 2.2.  

 𝑃 =
𝑛 + 𝛼

𝑚 + 𝛽
 Equation 2.2 

 

The two undefined parameters α and β in this formula have been subject of decades of discussion. Often 

used is the formula proposed by Weibull (1939), also recommended by Gumbel (1942), in which α = 0 

and β = 1. But many alternatives have been discussed in literature. In this study, the alternative 

with  which α = -0.3 and β = 0.4 is used, which was proposed by Bernard and Bos-Levenbach (1955) and 

is commonly used within the GRADE consortium. The resulting probability plotting position is shown in 

Equation 2.3.  

 𝑃 =
𝑛 − 0.3

𝑚 + 0.4
 Equation 2.3 

 
The return period is given by equation Equation 2.4, as defined by Buishand & Wijngaard (2007):  

 𝑇 = −
1

log(𝑃)
 Equation 2.4 

 
Timeseries of extremes, especially short ones, are often described using extreme value distributions, 

which describe the behaviour of the extremes and allow for the extrapolation to return periods that are 

larger than the length of the dataset. The extreme value distribution that is most commonly used in this 

study is the Generalized Extreme Value (GEV) distribution (Jenkinson, 1955), which can capture various 

types of extreme behaviour. The GEV distribution combines the Gumbel (Type I), Fréchet (Type II) and 

Weibull (Type 3) families and its cumulative distribution function is provided with Equation 2.5 and 

Equation 2.6. 

 𝑃 = 𝑒−𝑡(𝑥) Equation 2.5 
With: 

 𝑡(𝑥) = (1 + 𝜉 (
𝑥 − 𝜇

𝜎
))

−
1
𝜉

  If 𝜉 ≠ 0 
Equation 2.6 

 𝑡(𝑥) = 𝑒− 
(𝑥−𝜇)

𝜎     If 𝜉 = 0 

 

The GEV distribution is defined by three parameters. The location parameter (μ) determines the centre 

of the distribution, the scale (σ) parameter controls the spread of the distribution and the shape 

parameter (ξ) determines its skewness. The latter parameter will often be addressed later in this study. 

A comprehensive description of the influence of the GEV-parameters on extrapolation is provided in 

Section 3.3. The parameters can be estimated by fitting the observed annual extremes to the GEV 

distribution.  However, as mentioned before, extreme estimation based on a GEV fit with a small 
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observational dataset can be very uncertain. Note that the Gumbel distribution is a special case of the 

GEV distribution, i.e., when the shape parameter is equal to zero.  
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3. Results 
This section provides a comprehensive analysis of the quality of the RACMO dataset and its potential, 

with specific focus on extremes. Firstly, long synthetic timeseries are compared with observations for 

different variables that are relevant for the estimation of hydrological extremes. Subsequently, the 

effect of climatic variability on the estimation of extremes in short datasets will be examined using the 

16 ensemble members of the RACMO dataset separately. Thirdly, the main advantages of the length of 

the RACMO dataset will be further investigated through a statistical analysis, which is followed by 

addressing the seasonality of the meteorological extremes and how this may affect the hydrological 

perspective.  

3.1. Long synthetic timeseries for hydrological application 
To ensure an accurate representation of hydrological extremes, the climatology of the synthetic 

timeseries must be representative. For example, precipitation extremes have a large influence on the 

hydrological response of catchments, and must therefore be accurately portrayed in the synthetic 

RACMO dataset. To test this, precipitation extremes of the RACMO dataset are compared with observed 

extremes in this section.  

The response of catchments to extreme precipitation is not linear and depends on various catchment 

characteristics. Representing these characteristics in a hydrological model is essential for adequate 

representation of discharge extremes. To ensure good representation of e.g. antecedent soil moisture, 

evaporation processes and snow melting processes in the hydrological model, the RACMO dataset must 

accurately reflect the distribution of meteorological variables throughout the year. This is why the 

annual cycle of all relevant meteorological variables is also compared with observations in this section.   

3.1.1. Annual cycle 
Figure 3.1 displays the precipitation annual cycle of E-OBS, GenRE, as well as the raw and corrected 

RACMO datasets. The plot represents the average daily precipitation for all calendar days throughout 

the year. Unless stated otherwise, the Figures depict the average over the catchment areas of the 

Meuse at Borgharen, the Meuse at St. Mihiel, the Lesse and the Vesdre. An overview of the annual cycle 

of all catchments is provided Appendix 6.1. 
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Figure 3.1 Overview of the annual cycles of RACMO (original and corrected), E-OBS and GenRE, averaged over the catchment 
areas of the Vesdre, Lesse and the Meuse upstream of St. Mihiel and Borgharen. The annual cycle presents the average daily 
precipitation falling on a certain day of the year based on all years in the dataset and in each ensemble member. 

To have an adequate climatological representation, the distribution of precipitation throughout the year 

in RACMO must match with that of observations. The results show a great improvement in resemblance 

between RACMO and observations after bias-correction, indicating that the bias-correction performs 

well. Where the raw RACMO data exhibit considerably higher precipitation averages during winter and 

spring compared to observations, and slightly lower values during summer, the corrected dataset has 

drier springs and wetter summers, better matching both observational datasets. Note that the E-OBS 

dataset is used for quantile mapping of the RACMO dataset, but the alternative GENRE dataset (with 

fewer years) also shows good resemblance to the distribution of precipitation throughout the year in 

the corrected RACMO dataset. Consequently, after bias correction, the annual distribution of 

precipitation in the RACMO dataset is considered suitable for application in the hydrological model. 

Figure 3.2 shows the annual cycle of the other meteorological variables that are required in the 

hydrological model (T,and PET), averaged over the Meuse basin at Borgharen. Here, the raw RACMO 

dataset, the corrected RACMO dataset and E-OBS are compared.   
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Figure 3.2 Annual cycles of daily average temperature and pet for the Meuse catchment upstream of Borgharen. 

For both temperature and PET, the bias-corrected RACMO results compare very well with E-OBS. This 

indicates that the bias correction is performing well and both temperature and PET data are well 

represented in the hydrological model by the RACMO dataset. Note that bias-correction is rather 

inessential for the temperature data, as the raw model result already compares very well with 

observations.  

3.1.2. Annual multi-day extremes 
A comparison between the annual extremes of the RACMO dataset and observations is provided for a 

daily and 5-day precipitation sum in Figure 3.3 and Figure 3.4. Note that the raw RACMO data is not 

included in in the Figures. This is because a large part of the data points in the extreme value plots 

originate from the upper 0.95 quantile of the annual timeseries, which was not subjected to a bias 

correction in this study. As a result, the differences between raw and corrected RACMO extremes are 

minimal and therefore, only the corrected RACMO dataset is shown in the Figures. To give an indication 

of the magnitudes of the precipitation maxima, the 1-day and 5-day sum of July 2021 have been added 

to the Figures. An overview of the annual extremes in other catchments is given in Appendix 6.3.  

With the exception of the GenRE dataset in St. Mihiel, all datasets exhibit a strong similarity to each 

other for both considered multi-day sums. This indicates that extremes are well represented in the 

corrected RACMO dataset, at least within the temporal domain covered by the observational datasets. 

As such, the climate model effectively captures the dynamics around singular daily precipitation 

extremes and inter-daily extreme precipitation patterns are also well represented and closely resemble 

reality. The resemblance of RACMO and observation data increases confidence that the model 

accurately represents the larger extremes that exceed the temporal range covered by observations. In 

general, the RACMO dataset shows to have great quality regarding precipitation extremes on daily and 

greater than daily scales and is therefore suitable for application in hydrological models to estimate 

discharge extremes.   
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Figure 3.3 Overview of daily annual maximum precipitation of RACMO, E-OBS and GenRE, averaged over the catchment areas of 
the Vesdre, Lesse and the Meuse upstream of St. Mihiel and Borgharen. 

Figure 3.3 and Figure 3.4 highlight one of the advantages of the large synthetic dataset. While extreme 

determination directly from the observational dataset is limited to return values of only a few decades, 

the RACMO dataset directly plots extreme estimation with return periods exceeding 1000 years. 

Besides, the longer dataset reveals potential behaviour and trends that can only be investigated with 

larger datasets and that were previously undiscovered. For example, the curvature of the extreme value 

plots can now be analysed and estimated in much greater detail and with much smaller uncertainty 

compared to previous studies with observations alone. The E-OBS dataset for both 1 and 5-day 

precipitation totals in the St. Mihiel catchment may for instance suggest downwards curving behaviour 

for return periods larger than 100 years. The RACMO dataset however suggests entirely opposite 

behaviour. A few of these new insights, including the shape of the curvature, but also the difference 

between summer and winter events in large datasets, are further explored in sections Fout! 

Verwijzingsbron niet gevonden. and 3.4.  

The July 2021 daily and 5-daily precipitation sums are shown for comparison purposes. Note that in 

several catchments, the daily and 5-daily sums of precipitation can become substantially larger than the 

July 2021 event according to the RACMO simulations. Particularly in the Vesdre, daily precipitation totals 

were simulated to be more than twice as large as the July 2021 event. Also note that July 2021 has a 

relatively low return period in the Vesdre according to the RACMO simulations, even though severe 

floods occurred in this basin. This discrepancy may be related to the rapid rainfall-runoff response of the 

Vesdre, potentially indicating that a daily time window is too large for the high runoff response. 
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Figure 3.4 Overview of 5-daily annual maximum precipitation of RACMO, and E-OBS and GenRE, averaged over the catchment 
areas of the Vesdre, Lesse and the Meuse upstream of St. Mihiel and Borgharen. 

3.1.3. Annual sub-daily extremes 
Although RACMO successfully captures extreme precipitation events at the daily scale, an adequate sub-

daily description of precipitation is also important to allow accurate description of the fast hydrological 

response of several smaller catchments. Figure 3.5 and Figure 3.6 compare hourly and 6-hourly annual 

precipitation extremes between the RACMO dataset and the GenRE dataset. Only the GenRE dataset is 

used as comparing dataset because E-OBS does not provide hourly data. Hourly and 6-hourly maxima of 

the July 2021 storm were not available and are therefore not presented in these figures. An overview of 

the annual extremes in other catchments is also given in Appendix X. 

The results show a reasonable agreement between GenRE and RACMO for the length of observations, 

specifically for the Borgharen and Vesdre catchments. However, there are slight discrepancies between 

the two datasets when the St. Mihiel and Lesse catchments are considered. It should be noted that 

Figure 3.1, Figure 3.3 and Figure 3.4 reveal a considerable difference between the E-OBS and GenRE 

datasets, particularly in the St. Mihiel catchment. This may indicate that the observed offset in Figure 3.5 

does not only stem from the RACMO dataset, but could also be influenced by potential shortcomings in 

the observational dataset. Besides, the observational timeseries only spans 12 years, which challenges a 

comparison with the 1000-year timeseries. Regarding 6-hourly data, the plots show a stronger 

agreement with the GenRE observation dataset. Resemblance is particularly improved for the Lesse 

catchment and slightly better for the Meuse upstream of St. Mihiel. These results give a first indication 

that RACMO can also be used at a sub-daily scale (6-hourly and potentially hourly) in hydrological 

analysis of extremes, but a more detailed description on the reliability of the sub-daily RACMO data is 

provided in section 3.2.  
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Figure 3.5 Overview of hourly annual maximum precipitation of RACMO and GenRE, averaged over the catchment areas of the 
Vesdre, Lesse and the Meuse upstream of St. Mihiel and Borgharen. 

Apart from their comparison with observations, the hourly RACMO extremes can also be tested based 

on literature. Hourly extremes generally show an upward curvature in extreme value analysis (e.g 

Beersma et al., 2019). This upward curvature is found for RACMO in all catchments, indicating that the 

tail behaviour of hourly extremes is well represented by the RACMO model. It is striking that the short 

hourly observational dataset does not exhibit the upwards curvature accurately for most catchments, 

which is presumably related to the short length of the dataset. This once again highlights the value of 

the long synthetic datasets.  

Although the July 2021 event has not been plotted, it is important to note that the 6-hourly precipitation 

extremes in the Vesdre simulated by RACMO have reached values that are substantially higher than the 

observed precipitation sums of July 2021. During this event, discharge extremes were reported within 6 

hours after the precipitation peaks. With similar catchment response to the RACMO precipitation 

extremes, discharge extremes based on the RACMO extremes will likely even reach higher discharges 

than reported in 2021, which is confirmed by Couasnon et al. (2023). A closer examination of the most 

extreme Vesdre event is conducted in section 544.2. Furthermore, the hourly and primarily the 6-hourly 

Vesdre show a clear inflection point in the graph. The origin of this inflection point is further discussed in 

section 3.4 and section 4.2.  
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Figure 3.6 Overview of 6-hourly annual maximum precipitation of RACMO and GenRE, averaged over the catchment areas of 
the Vesdre, Lesse and the Meuse upstream of St. Mihiel and Borgharen. 

3.1.4. Daily cycle 
Similar to the annual cycle, the distribution of daily precipitation can be analysed using a daily cycle, like 

depicted in Figure 3.7, in which the hourly precipitation is averaged over all days in the year. Because 

the daily distribution of precipitation is more pronounced in summer, the daily cycle of summer 

precipitation is also shown in Figure 3.8. Note that the signal of the raw RACMO model results is similar 

to that after applying a bias correction. The only effect of the correction is a vertical shift of the signal. 

This results from the fact that the bias correction does not distinguish between different hours and as 

such, the daily spread shown in these figures are entirely subject to the performance of the RACMO 

model.    

In both Figures, the shape of daily cycles of RACMO and observations is quite similar, especially after 

bias correction. The minima, maxima and the distribution of hourly precipitation therefore all seem well 

described by the RACMO model. The behaviour of short precipitation events is thus simulated 

reasonably well by the model, which is particularly important in summer. Note that the Figures show a 

slight phase lag, with the corrected RACMO dataset being ahead of observations, which is not 

uncommon in RCMs with parameterized convection (e.g. Rio et al., 2009). However, for the extreme 

statistics considered in this study, the timing of precipitation extremes on a daily scale is not of great 

relevance and will not impact the study results. Do note that the discrepancy in timing between hourly 

RACMO and observations should be considered for application in studies with other focal points.  
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Figure 3.7 Overview of the daily precipitation cycle of RACMO (original and corrected) and GenRE, averaged over the catchment 
areas of the Vesdre, Lesse and the Meuse upstream of St. Mihiel and Borgharen. 

 

Figure 3.8 Overview of the daily precipitation cycle in summer of RACMO (original and corrected) and GenRE, averaged over the 
catchment areas of the Vesdre, Lesse and the Meuse upstream of St. Mihiel and Borgharen. 
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3.1.5. Weather generator 
As explained in the methodology, there are two alternatives of the existing GRADE approach. In the first 

alternative, the 1000 year spanning synthetic timeseries is directly used as input of the wflow model. For 

return periods larger than 1000 years, statistical extrapolation can be applied, which is extensively 

discussed in section 3.3. The second alternative is to use the synthetic RACMO dataset as input of the 

WG. A brief extreme value analysis of this approach is provided in this section. Note that the analysis is 

limited to time windows of a day or larger, as the WG only runs with a daily input. The annual extremes 

of the corrected RACMO dataset and E-OBS dataset, both before and after WG resampling, are depicted 

in Figure 3.9 and Figure 3.10 for respectively a 1 and 5-day sum. The WG plots for the other catchments 

can be found in Appendix 6.4.  

 

Figure 3.9 Annual maximum precipitation for a 1-day precipitation sum for RACMO (with and without WG resampling) and E-
OBS 

The main disadvantages of the WG are also visible in Figure 3.9 and Figure 3.10. Resampling of daily 

precipitation sums will never exceed the maxima that are in the original RACMO dataset. Use of the WG 

for a 1-day precipitation sum is therefore not useful. As mentioned in section 1.2, use of the WG 

becomes more plausible for 5-day precipitation extremes. Return periods can be estimated for durations 

exceeding 100.000 years. Note that the WG result of the RACMO dataset displays several jumps, which 

are likely caused by methodical flaws of the WG. However, over- or underestimation of the WG occurs 

much later when the RACMO dataset is used as resampling dataset compared to the observational 

dataset.   
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Figure 3.10 Annual maximum precipitation for a 5-day precipitation sum for RACMO (with and without WG resampling) and E-
OBS 

Note that the WG can not be used for estimation of precipitation extremes with a daily time window or 

lower, whereas catchments in the Meuse basin are likely to respond to such short sub-daily 

precipitation. Depending on the results of this study, it may therefore be valuable to conduct additional 

research to create an hourly version of the WG.  

3.1.6. Overview of RACMO return values 
Table 3.1 provides an overview of the return values for all considered catchments within the Meuse 

basin and the basin as a whole for both an hourly and a daily duration. The return values have been 

obtained by fitting a GEV distribution to the annual extremes and extracting the maximum value 

corresponding to each relevant return period. For return periods exceeding the RACMO dataset length 

(greater than 1000 years), the GEV fit on the WG result has been used. As a measure to determine the 

offset of the GEV from the data points, the most extreme empirical value is added to the table (which 

has a plotting position around a return period of 1400 years). In Appendix 6.5, tables with return values 

for a 2,3 and 5-day sum are presented.  

In general, comparison of the RACMO results with different observational datasets in the previous 

section of this chapter has shown that the bias-corrected RACMO data appears to be adequate for 

hydrological simulations to estimate discharge extremes. The return values corresponding to 1, 10 and 

100 year return periods as presented in Table 3.1 can therefore be considered as accurate estimates 

(with increasing uncertainty for larger return periods), for both daily and sub-daily timesteps. Besides, 

assuming that the statistical uncertainty reduces with the square root of the size of the dataset, the 

statistical uncertainty of the daily return values in Table 3.1 is approximately 4 times smaller than that of 

observations, while the reduction is almost 10-fold for sub-daily data. However, even with the reduced 
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statistical uncertainty, the derivation of return values higher than 100 years is still subject to substantial 

uncertainty (either due to the statistical uncertainty of the GEV distribution or due to the imperfections 

of the WG) and should therefore be treated carefully. Comparisons of the differences between the 

maximum empirical return value and the GEV 1000 year return value suggest similar caution. Do note 

that the plotting position of the maximum empirical return value is also uncertain and can therefore be 

an over or underestimation of the true value as well.   

Table 3.1 Overview of different precipitation return values of the Meuse basin and its catchments for a daily and hourly sums. 
Results are presented in millimeters per timestep.  

 Hourly sum Emp Daily sum Emp 

RP (years) 1 10 100 1000 ~1400 1 10 100 1000 10000 100000 ~1400 

Meuse 3.1 5.0 8.0 12.8 12.3 24.7 36.8 49.6 63.2 79.8 96.9 96.5 

St. Mihiel 4.7 9.1 17.9 35.2 24.8 27.2 42.5 59.2 77.7 103.4 130.5 98.4 

Chiers 4.9 9.4 19.0 40.0 23.9 29.7 44.7 61.3 79.6 95.7 115.0 91.1 

Stenay 4.9 9.8 21.4 48.9 27.9 28.7 45.1 64.7 88.2 111.2 141.1 137.6 

Chooz 5.0 9.4 18.7 38.5 40.9 30.6 45.2 60.5 76.3 96.8 117.0 128.0 

Semois 5.5 10.3 21.3 46.1 39.0 34.7 51.6 67.8 83.3 99.4 114.6 104.9 

Viroin 5.5 11.2 24.2 54.5 39.0 28.9 45.1 65.4 91.0 120.2 157.5 117.5 

Namur 5.1 10.3 21.7 46.8 54.8 26.3 42.0 63.5 93.0 132.3 187.3 139.7 

Lesse 5.2 10.3 21.2 44.3 32.9 28.9 45.4 64.5 86.7 120.0 157.5 128.4 

Sambre 4.6 9.1 18.0 35.4 31.3 26.6 41.9 60.2 82.2 105.5 134.7 97.0 

Ourthe 5.0 10.0 21.3 46.9 43.5 29.3 46.5 65.0 84.9 114.2 144.1 82.7 

Ambleve 5.5 11.2 24.0 52.5 45.2 32.7 53.9 78.4 106.8 138.5 175.9 136.5 

Vesdre 5.7 11.5 23.3 47.1 54.8 34.8 58.8 86.8 119.5 154.2 196.1 220.6 

Mehaigne 5.3 11.5 25.0 54.9 42.3 26.2 43.5 66.3 96.3 132.3 181.9 115.5 

Liege 4.8 9.3 17.4 31.9 48.9 26.9 43.8 66.5 97.1 125.4 168.7 119.8 

Jeker 5.3 11.4 23.6 48.4 62.0 26.6 43.8 65.9 94.3 128.7 174.7 132.5 
 

The availability of long synthetic data has enabled the analysis of an entirely new domain of return 

values that was previously unexplored. Although absolute values of the high return periods may still be 

prone to statistical uncertainty, the length of the dataset suggests a more reliable description of the 

curvature of extreme value plots, which is elaborated upon in sections 3.2 and 3.3. Such an accurate 

description is potentially even more important than achieving an exact resemblance with observations 

for lower extreme values, because it will often be a dominant factor in the statistical approximation of 

precipitation extremes corresponding to very high return values. A more detailed analysis of the 

advantages of long synthetic data regarding the curvature of extreme value plots is provided in section 

Fout! Verwijzingsbron niet gevonden..  

3.2. Ensemble members of the synthetic dataset 
The main advantage of the synthetic RACMO dataset, as has been addressed multiple times, is its length 

compared to observations. However, the dataset is not generated through a continuous simulation. 

Instead, 16 simulations of 65 years were executed, all of which are different but representative for the 

current climate. This approach allows for the examination of the climatic variability within the RACMO 
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dataset. For example, the spread of annual extremes over a similar climate can be examined, to provide 

an understanding of the degree to which extreme values of the different datasets may vary within 

similar climatic conditions. Furthermore, the climatic spread along the ensemble members can be used 

to assess whether the observed values fall within the expected climatic variability of RACMO. Analysis of 

climatic variability of the RACMO model based on the different ensemble members is provided in this 

section.    

 

Figure 3.11  Daily Annual maximum precipitation for all 16 RACMO members separately and the E-OBS dataset, including a 
confidence interval based the spread of the 16 RACMO members. 

The climatological spread of the precipitation extremes in the RACMO dataset is shown in Figure 3.11, 

Figure 3.12 and Figure 3.13 for respectively a daily, hourly and 6-hourly time step. The annual extremes 

for all 65-year long datasets (16 members) have been matched with their corresponding return period. 

The 2.5th to 97.5th percentile range, which we refer to as the ensemble spread of the extremes has been 

determined using all 16 members, being an indicator for the spread of the member extremes in similar 

climatic conditions. The daily RACMO dataset has been compared to the E-OBS observations, which have 

a similar length as the individual ensemble members of the RACMO dataset. To compare the hourly and 

6-hourly data, the GenRE dataset is used. To ensure a good comparison for these time steps, the 16 

ensemble members have been divided into 5 segments of 12 years each, resulting in a timeseries length 

similar to that of the observations.   

Both the percentile range and the individual RACMO points show an increasing spread for larger return 

periods across all catchments. Depending on the region, the spread starts becoming more pronounced 

for return values of 5-10 years when regarding the daily datasets. The large variety of the high daily 

extremes shows that estimating such extremes with the given dataset length becomes progressively less 
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reliable2. This loosely suggests that a dataset of approximately 65 years is suitable for estimating 

extreme values up to approximately 10 years. Larger return periods show a significant spread and 

estimation of corresponding return values is therefore not very reliable. As observational datasets are 

generally not much longer than the individual members of the RACMO dataset, estimation of large 

extremes based on these datasets is highly prone to the accidental occurrence of an extreme event, 

given the substantial possible variation in a given climate. Consequently, the reliability of high extreme 

estimates from observational datasets is limited.    

 

Figure 3.12 Hourly Annual maximum precipitation for all 16 RACMO members separately and the GenRE dataset, including a 
confidence interval based the spread of the 16 RACMO members 

In the even shorter hourly and 6-hourly datasets (with 12 years of data), the climatic variability in 

precipitation extremes is already more pronounced and exponentially increasing for return periods 

between 1 and 5 years. This implies that datasets with a sub-daily timestep, which are typically available 

for a limited time span like the GenRE dataset, cannot be used to estimate extremes with return periods 

larger than 5 years. Consequently, determining large sub-daily precipitation and discharge extremes 

using currently available datasets proves to be extremely insecure. In general, whether using a daily or 

sub-daily time step, there is a significant need for larger datasets, emphasizing the crucial necessity of 

using large synthetic datasets.  

 
2 The low bound of the confidence interval starts decreasing for larger return periods and should technically be 
constrained. 
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Figure 3.13  6-Hourly Annual maximum precipitation for all 16 RACMO members separately and the GenRE dataset, including a 
confidence interval based the spread of the 16 RACMO members 

Figure 3.11 shows that the observational datasets generally fall within the confidence interval set by the 

daily RACMO dataset. This indicates that the observations are consistent with the expected variability of 

the RACMO dataset. In other words, the observations could be considered as a 17th ensemble member 

of the RACMO dataset in most catchments. This statistical consistency implies that the observations are 

comparable to the RACMO dataset in terms of extreme precipitation on a daily timescale, again 

confirming the reliability of the synthetic dataset for estimating precipitation extremes on this time 

scale. 

The only catchment in which observations are not entirely enclosed by the RACMO confidence interval is 

the Semois catchment (see Appendix 6.6.1), where the middle extremes are slightly lower than the 

lowest bound of the RACMO confidence interval. Note that this discrepancy may be attributed to the 

fact that there is a considerable likelihood of one outlying sequence among the 15 catchments. 

Alternatively, it is possible that the differences between the modelled RACMO extremes and 

observation extremes in the Semois catchment are of more systematic nature. Particularly the 

orography of the catchment, being an elongated valley, can be difficult to capture in the RACMO 12x12 

grid size of the RACMO model.  

The sub-daily data can also be tested by examining if the observations fall within the confidence 

intervals of the RACMO ensembles as presented in Figure 3.12 and Figure 3.13. The figures show slightly 

more outlying data points compared to the daily RACMO dataset. However, the majority of the data 

points in the observational dataset still fall within the confidence intervals. This reaffirms that the sub-

daily RACMO datasets (in particular the 6-hourly dataset, but even the hourly dataset) provide a 
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reasonably accurate description of annual extremes. This is particularly important for smaller 

catchments where the fast response of extreme runoff can not be adequately estimated by using a daily 

time step.   

There are several catchments in Figure 3.12, for which some of the observed extremes fall outside the 

RACMO confidence intervals. As the observational dataset only spans 12 years, these deviations could 

potentially be related to the high statistical uncertainty of the observational extremes. Besides, Figure 

3.1 shows there can be a considerable difference between the two observational datasets in some 

catchments (e.g. St Mihiel), indicating that the quality of the observational datasets is not consistent 

either. Overall, the observations follow a similar patter as the RACMO dataset, with a few points that 

exhibit distinct behaviour. Note that most of the offsets are mitigated when considering a 6-hourly time 

step.   

In general, observational precipitation extremes fall almost entirely within the confidence intervals set 

by the climatic variability of RACMO for daily and even sub-daily time steps. In other words, the climatic 

description of extremes is considered to be comparable between observations and the RACMO dataset. 

This demonstrates that the RACMO dataset provides a reliable estimation of precipitation extremes, 

which is crucial for the hydrological follow-up of this study. Furthermore, the large climatic spread of the 

RACMO dataset for high extreme return values has shown that estimation of extremes around or above 

the length of the dataset is rather unreliable. This once again stresses the importance of a longer 

dataset.   

3.3. The GEV shape parameter 
Previous results have shown that the length of the dataset is important for the estimation of high 

extremes. Besides the improved statistical uncertainty, long timeseries also enable improved evaluation 

of the shape of the extreme value plots, due to the increased availability of data points within the 100 to 

1000 year range. The shape of extreme value plots is generally described by a GEV distribution, which is 

defined by a location, scale and shape parameter, as previously described in section 2.3.3. The location 

and to a lesser extent the scale parameter can be estimated adequately based on a relatively short 

timeseries. The shape parameter, which mainly controls the shape of the distribution’s tail, requires a 

longer dataset for an adequate estimate, because longer datasets have more datapoints and therefore 

provide more information on the tail of the distribution. Gordon et al. (2015) has illustrated the 

influence of all GEV parameters on an extreme value plot as depicted in Figure 3.14.  
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Figure 3.14 Overview of the influence of the GEV-parameters on the extreme value plots (Gordon et al., 2015), with b) the 
influence of the location parameter, c) the influence of the scale parameter and d) the influence of the shape parameter 

This Figure suggests that the value of lower extremes is predominantly influenced by perturbations of 

the location parameter. However, middle and high extremes are especially reliant on changes in the 

scale and to larger extent the shape parameter. Generally speaking, an adequate estimate of high 

extremes is primarily dependent on the shape parameter of a GEV distribution, which is best estimated 

by larger datasets. In other words, an accurate description of the curvature in the extreme value plots, 

which is more accurately described by the long RACMO data compared to the shorter observations, is of 

higher importance for the representation of large extremes than a decent comparison between 

observations and the RACMO dataset in the lower return period domain. A more detailed analysis of the 

curvature of the RACMO extremes and the shape parameter of the corresponding GEV distributions is 

provided in this section.  

3.3.1. Daily GEV distributions 
Figure 3.15 shows the GEV distributions fitted to the annual extremes (daily timestep) of each seperate 

RACMO member using maximum likelihood estimation in red, the combined RACMO timeseries in green 

and E-OBS in black. The individual datapoints, that were the foundation of the GEV fits, are also plotted 

in corresponding colour. The GEV distributions of the other catchments is provided in Appendix 6.7. 

There is an enormous spread between the GEV fits of the different ensemble members in all catchments 

and even the sign of the shape parameter (indicating upwards or downwards curvature) deviates 

between the different ensemble members. This indicates that the climatological spread of the ensemble 

members also leads to a significant deviation in the statistical representation of extremes. Any GEV 

based on a limited amount of data, such as the observational dataset, is therefore unreliable for 

estimation of high return values and has the risk of under- or overestimating extreme events.  
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Figure 3.15 GEV distributions fitted to the daily annual extremes all separate RACMO member, the combined RACMO dataset 
and the E-OBS dataset. 

The curvature of the separate RACMO members is strongly influenced by outliers due to the limited 

number of datapoints. Short observational datasets may experience similar effects. The larger RACMO 

dataset is only lightly impacted by the outlying datapoints and therefore generally gives a better 

representation of the trend of the extremes. In several catchments (e.g. catchments Sambre or Jeker in 

Appendix 6.7.1), there is a substantial difference between the GEV of E-OBS and the GEV of RACMO, 

even in the direction of the curve. As the RACMO timeseries likely provides a better estimate of the 

shape parameter, it is likely to assume that the statistical description of extremes based on observations 

in these catchments is not adequate. Particularly in catchments where the GEV gives substantially lower 

extremes for observations than for RACMO, the risk of underestimating extremes using a statistical 

approach is high. 

The curvature of the long RACMO GEV distributions differs between the various catchments of the 

Meuse basin. The shape parameter ranges from positive (downwards curvature) to negative (upwards 

curvature). In most cases, the curvature of the daily extremes is not extremely pronounced. The 

Borgharen and Chooz catchments for example seem to be well captured by a Gumbel distribution, which 

has a straight line and a shape parameter of 0. In general, the curvature of the GEV distributions seems 

to be catchment specific. The influence of catchment characteristics on the shape parameter, such as 

the size and location of the catchments, is analysed together with the temporal influence on the shape 

parameter in section 3.3.3.   
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Appendix 6.7.2 shows the GEV distributions fitted to the annual extremes of separate RACMO members, 

the combined RACMO timeseries and observations for a 5-day precipitation sum. The differences 

between observations and the synthetic RACMO are also evident for these multi-day sums. In many 

catchments, even the sign of the shape parameter differs between the two GEV representations. Note 

that the long RACMO timeseries almost all have a shape parameter of zero or larger (downwards 

curvature). 

3.3.2. Hourly GEV distributions 
The variation in GEV representation between short and long timeseries can also be analysed for an 

hourly time step. Figure 3.16 presents the GEV distribution fitted to the hourly annual for the separate 

RACMO ensemble members, the long RACMO timeseries and the GenRe observational dataset. Note 

that the hourly GenRe dataset is considerably shorter in length than the daily E-OBS dataset. The effects 

of the dataset length are apparent when addressing the differences between the GEV’s of observations 

and the long RACMO timeseries. In many catchments, the observational shape parameter is positive, 

whereas all RACMO members, including the long timeseries, curve upwards. Beersma et al. (2019) 

showed that a GEV distribution of hourly maxima generally curves upwards, corresponds well with the 

RACMO simulations. The observational GEV’s on the other hand, often do not reproduce an upwards 

curvature, implying that any high return value estimates based on statistical extrapolation of the short 

observational timeseries is likely an underestimation of reality. As such, estimation of large hourly 

extremes is a lot more reliable when the RACMO dataset is considered.   

 

Figure 3.16 GEV distributions fitted to the hourly annual extremes of all separate RACMO member, the combined RACMO 
dataset and the E-OBS dataset. 
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Although all RACMO member GEV’s show upwards curvature, there is still a large variety between them. 

This indicates that any hourly datasets of approximately 65 years can also exhibit a significant difference 

in their statistical representation. 

3.3.3. Temporal and spatial spread of the shape parameter 
As discussed before, the curvature of return value plots is an essential determinant for the estimation of 

high extremes. This section will discuss the potential influence of temporal and spatial effects on the 

curvature (defined by the shape parameter), based on the long synthetic timeseries with a more stable 

curvature. 

Figure 3.17 presents the shape parameter of the GEV fit for different time windows per catchment, 

considering both RACMO and observations (E-OBS for a daily time step, GenRE for an hourly time step). 

The shape parameter of the observations exhibits a large spatial variation over the catchments for all 

time windows, whereas the RACMO dataset shows a relatively constant distribution of the shape 

parameter per time step. In other words, the shape parameter of observations appears to have a 

random spatial distribution for all time steps, contrary to the RACMO timeseries which shows a 

relatively comparable spatial distribution of the shape parameter, which increases for larger time 

windows. In general, it is clear that the increase of dataset length leads to a decrease in randomness of 

the shape parameter, enabling further investigation of potential patterns of this curvature. Note that 

the value of the shape parameter of the daily RACMO dataset ranges around a value of –0.1. This is a 

value that is often found in literature (e.g. Papalexiou and Koutsoyiannis, 2013). Besides, a value of –0.1 

has been linked with the physical process of the extreme precipitation in Wilson & Toumi (2005), 

suggesting a physical meaning of the shape parameter. Refer to section 4.2 for a more detailed 

discussion about the shape 

parameter. 
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Figure 3.17 Spatial distribution of the shape parameter of the GEV distribution for the catchments in the Meuse basin based on 
E-OBS and RACMO. 

Figure 3.17 provides evidence that the influence of catchment size (averaging precipitation over 

different sizes) on the shape parameter and the curvature of extremes is considerably smaller compared 

to the influence of the considered time window for catchments in the Meuse basin. This finding is 

supported by Figure 3.18, in which the influence of catchment size on the shape parameter of the 

RACMO GEV distributions is presented for four different time windows. Each point represents the shape 

parameter of a single catchment. The trendlines are plotted, including their corresponding R2 value. The 

plots show a marginal increase in the shape parameter with catchment size. However, the low R2 value 

of all trendlines suggests that the variation of the shape parameter between the catchments is only 

slightly represented by the catchment size. In general, for the relative size differences of catchments in 

the Meuse basin, averaging precipitation over different catchment sizes has a limited effect on the 

curvature of the GEV distribution. The earlier mentioned effect of the considered time window on the 

curvature of the GEV distribution is well captured by Figure 3.18.  

 

Figure 3.18 The influence of catchment size on the shape parameter for 4 different parameters, based on the RACMO dataset 

In conclusion, the GEV shape parameter appears stable in RACMO, with values that are confirmed by 

literature. The shape parameter from observational records is less stable, which is caused by the short 

record length. Note that the scale and location parameter is expected to be better estimated using 

observations, as this is less dependent on record length and the RACMO parameters may be affected by 

model bias. However, in this study, the stability of the shape parameter is more relevant than potential 

model bias in the RACMO dataset, because the shape parameter is the determining parameter for high 

return value estimates. Therefore, for large return periods, the RACMO data will provide a considerably 

better estimate of return values than the observations, as the decrease in statistical uncertainty of the 

shape parameter outweighs an increase of model uncertainty regarding the scale and location 

parameter. Refer to section 4.2 for a more detailed discussion about model uncertainty and statistical 

uncertainty. 

3.4. Seasonal effects 
The meteorological and hydrological events of July 2021 were exceptional for the summer period. 

Precipitation accumulated to amounts that were never observed before in that season. It is important to 

consider whether this summer event was an incidental extreme or not. To provide more insight into 

summer extremes, their likelihood of occurrence and their extremity compared to winter events, the 
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influence of seasonality on extremes is analysed in this section. Note that the summer is defined as the 

half year with months April, May, June, July, August and September. The winter is defined as the half 

year covering the remaining months. 

Figure 3.19 - Figure 3.21 give annual extremes for the summer and winter half year, for respectively a 

daily, 10-daily and hourly time window. Both the RACMO dataset and observations are depicted in the 

plots. The 10-day precipitation sum is not representative for the hydrological response in the Meuse 

basin, but has been chosen to distinguish several entirely different time windows. An overview of all 

catchments is provided in Appendix 6.8. 

 

Figure 3.19 1-day summer and winter annual extremes in different catchments of the Meuse basin 

Met opmerkingen [VvL(3]: Mm/hour --> mm/day 
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Figure 3.20 10-day summer and winter annual extremes in different catchments of the Meuse basin 

In most catchments, winter maxima with a daily time step are higher for the low and middle extremes 

compared to summer maxima. However, the summer maxima have a clear inflection point and generally 

have a rapid increase in extremity for high return values. As depicted, summer extremes will often 

surpass winter extremes for higher return values. While low daily extremes are often slightly smaller in 

summer than in winter, high extremes seem to be particularly dominated by summer events. Like 

experienced in July 2021, summer events can be as extreme, or even extremer than winter events 

according to the RACMO simulations. As such, increased awareness of the potential magnitude of 

precipitation extremes in summer and the corresponding flood risk is essential. Evidently, extremes 

exhibit different behaviour in summer and winter due to the different nature of precipitation in both 

seasons. Therefore, daily precipitation data must be described with a double population (instead of a 
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combined GEV for calendar year maxima). More implications on the existence of a double population 

are given in section 4.2. 

 

Figure 3.21 1-hour summer and winter annual extremes in different catchments of the Meuse basin 

Figure 3.20 shows that 10-day precipitation extremes are consistently larger in winter than in summer, 

which corresponds well with the long-lasting frontal precipitation that typically occurs. Vice versa, the 

hourly precipitation (Figure 3.21) is consistently higher in summer compared to winter across almost all 

catchments. This is caused by the short intense precipitation events that typically occur in summer. In 

both cases, the annual extremes can therefore be captured statistically by using 1 population. However, 

summer events may require a double population, related to the dewpoint temperature (see section 

4.2). The results show that summer or winter dominance depends on the time window and there are 

time windows for which summer extremes become gradually more extreme than winter extremes for 

larger return periods. The occurrence of high discharge extremes in summer (potentially even larger 

than the winter extremes) is therefore dependent on the rainfall-runoff response time of catchments, 

where fast-responding catchments are more likely to experience high summer extremes. Note that the 

discharge yield in catchments is not linear to precipitation and is dependent on catchment 

characteristics.  

Although this study mainly focusses on precipitation extremes, the final aim of this research is to 

provide reliable estimates of discharge extremes as well. It is important to note that the hydrological 

response to precipitation is not linear and that hydrological results and conclusions may therefore differ 

from the meteorological results. It is therefore strongly recommended to also regard the hydrological 

report of Couasnon et al. (2023). One example of the non-linearity of the hydrological response is the 

spatial distribution of the precipitation event. The two largest (summer) precipitation events for 
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Borgharen are presented in Figure X. Note that the nature of these events differs, which could also lead 

to an entirely different hydrological response. Furthermore, although these summer precipitation 

extremes have a larger basin-average result than in July 2021, the discharge yield is not larger than that 

of July 2021 (Couasnon et al., 2023). As such, the hydrological analysis of the meteorological results 

presented in this study is essential.  

 

Figure 3.22 Overview of the two maximum events in Borgharen (both summer events). There is a clear spatial spread between 
the two figures, which may lead to an entirely different hydrological response.  
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4. Conclusions, Discussion & Recommendations 

4.1. Conclusions 
This study describes and explores the approach of using synthetic data from the RACMO climate model 

in order to improve extreme return value estimates of precipitation and discharge. The results of this 

study show:   

• The climatology of RACMO precipitation extremes in the Meuse area compare very well with 

observations3.  

• The extensive length of RACMO reveals a range of extreme values that was previously 

unanalysed, providing a more plausible way to estimate the tails of annual precipitation 

extremes. These results are therefore a promising step in the direction of improved large return 

value estimates.  

• The statistical uncertainty in the estimation of extreme precipitation is strongly reduced by the 

use of RACMO data: the use of 16 members results in a statistical uncertainty that is (roughly) 4 

times smaller than the use of observations only4 for daily data. For hourly data, for which only 

12 years of (gridded) data are available, the effect is a reduction with a factor of almost 10.  

• The estimations of the GEV shape parameter from observed precipitation maxima are spatially 

inconsistent. Long timeseries provide a more reliable estimate of the shape parameter.   

• Averaging in time substantially increases the GEV shape parameter5. Spatial averaging may 

slightly increase the GEV shape parameter, but this effect is less pronounced.   

• The clear distinction between the GEV distributions of summer and winter events in RACMO 

may indicate the existence of a double population (see section 4.2) and a transition between the 

dominance in magnitudes from winter to summer maxima. How and whether this effect is also 

translated into discharge extremes is described in the hydrological report of Couasnon et al. 

(2023). 

4.2. Discussion 
Additional explanations and insights can be provided for several results and conclusions presented in 

this report:  

• RACMO is – as all climate models are - prone to systematic model biases. This leads to too high 

precipitation amounts in winter, and too low amounts in summer. As described earlier, the 

distribution of precipitation throughout the year can have a large effect on the amount of water 

in the soil, which is an essential parameter in discharge modelling. To ensure that these biases 

do not affect the discharge results, the applied Quantile Mapping bias correction leads to 

removal of the bias in the annual cycle. This holds both for precipitation, temperature and 

(potential) evaporation. No bias correction is applied for the most extreme quantiles (P > 0.99).  

• It is well known that RCM’s like RACMO underestimate the extreme hourly precipitation 

amounts when compared with station data. The reasonable agreement of RACMO and 

observations found in this study may be caused by the fact that, in this analysis, the comparison 

 
3 The quantiles up to 0.99 are bias corrected in order to get a correct annual cycle. 
4 Assuming that the statistical uncertainty reduces with the square root of the increase of the size of the dataset. 
5 The shape parameter becomes less negative, i.e. tends to a lighter tail. 
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is done over spatial averages. This may lead to largely reduced precipitation amounts of the 

observations compared to the point data of rain gauges (see Lombardo et al., 2006). 

• The RACMO data adds value to the observational data only if the reduction in statistical 

uncertainty is large relative to the introduced RACMO model uncertainty. As already indicated, 

the model uncertainty is removed in the annual cycle, and absent in extreme (daily) events. The 

question that remains is: “Can we trust the GEV shape parameter of the (hourly and daily) 

extreme precipitation as derived from the RACMO data?”6 We think that this is indeed the 

case, and we have the following arguments:  

o The value of the GEV shape parameter as derived from the daily precipitation RACMO 

data is close to the value of –0.1, as given by Papalexiou and Koutsoyiannis (2013) and 

others.  

o Even if the location and/or scale parameter of the RACMO-based GEV distribution is 

biased, it is well possible that the shape parameter is unbiased. We have several reasons 

for this:  

▪ The shape parameter is a dimensionless parameter, which already indicates that 

it has a more generic meaning than e.g. the location parameter (which is very 

sensitive to orographic effects, to the way that precipitation is parameterized in 

models, etc.). The fact that the shape parameter is often assumed to be 

constant over a region - and can then be estimated by combining all station 

records in that region (as done by e.g. Beersma et al. (2018)) - sustains this 

assumption.   

▪ Wilson and Toumi (2005) give a fundamental distribution of heavy rainfall, 

which they connect with the physical process of the extreme precipitation. This 

again leads to the value of –0.1 of the shape parameter (see Van den Brink & 

Konnen 2011).  

The physical process that Wilson and Toumi (2005) describe are well described 

by RCM’s like RACMO, which makes the estimated shape parameter 

trustworthy. This is confirmed by the agreement in the value of –0.1 between 

observations and model(s).  

▪ A more comprehensive consideration of the added values of climate models is 

given in the Appendix A of De Valk & Van den Brink (2023).  

• Results of this study show that extreme precipitation events from summer and winter may 

originate from different populations, with distinct parameters of the corresponding (GEV) 

distributions. Whether this finding has consequences for the estimation of very extreme return 

values depends on different aspects:  

o For hourly precipitation extremes in the Meuse area, the summer maxima are always 

higher than the winter maxima (see Figure 3.21 both for the RACMO data and 

observations). This implies that all the annual maxima are summer events. This is caused 

by convection, which is much more pronounced in summer than in winter.  

o For 10-day extremes, it is vice-versa: all annual maxima originate from winter, and the 

corresponding extreme value distribution is single populated.  

 
6 The question is not primarily whether the GEV distribution is the correct distribution, but whether the curvature 
of the distribution is realistic and not a model artefact. 
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o However, for 1-day (and also for 6-hourly) maxima, some of the event occur in summer, 

and some in winter, with an increased probability for summer events for larger return 

periods. Stated otherwise, this implies that, on an extreme value plot, there is a smooth 

transition from the less extreme events originating from winter to the most extreme 

events originating from summer. The return period for which both extremes are of the 

same order is hard to determine, as it depends on many factors, like the exact duration, 

the size of the area over which is averaged, etc.   

It is precisely this range from 1-hourly to 24-hourly extremes that are crucial in the 

formation of extreme discharges for the (sub)catchments of the Meuse. The 

consequence is that fitting an extreme value distribution on a single population may fail 

for extrapolation purposes. Depending on the return period where the summer events 

exceed the winter events, it may result in either under- or overestimation.  

Special attention should be paid to situations when this so-called ‘transition point’ 

occurs at a return period that exceeds the length of the (observational) dataset, but is 

lower than the return period that is used for design criteria: due to its rarity it is unlikely 

that events from the second (but severe) population are found in the observational 

record, but they dominate the return values of the design criteria. The RACMO data 

shows clear indication that this situation may occur (even more pronounced in the 

discharge results than in the meteorological results, see Couasnon et al. (2023)).It is very 

well possible that the July 2021 event is an illustration of this hazardous situation, which 

emphasises the need for further research on the possible existence of double 

populations in the annual maxima.   

o The concept of double populations in precipitation extremes is well known. E.g., 

Lenderink et al. (2017), and Beersma et al. (2018) showed the existence of a second 

population of extremes within the summer season, strongly related to the dewpoint 

temperature: Dewpoint temperatures above 17.5°C can be part of a second population. 

It is likely that the distinction between summer and winter extremes as found in this 

study is related to the distribution of summer events into 2 dewpoint temperature 

related populations. Therefore, it is recommended to explore how this dewpoint 

temperature influences precipitation extremes in RACMO. Although the intensity of the 

second population may be affected by model bias, its existence is clearly indicated by 

the results of this study and by Lenderink et al. (2017) and Beersma et al. (2018).    

• As an illustration, an analysis of the event that caused the largest precipitation amounts for the 

Vesdre catchments (see QR-code below) shows that, from a synoptical perspective, the event is 

realistic, and even shows features that reminds to the July 2021 event, e.g. the slow-movement 

of the system, leading to huge amounts of precipitation in a relatively small area. This indicates 

that – although being very extreme – the largest simulated RACMO events have a realistic 

character and have to be taken seriously.  

 

Met opmerkingen [VvL(4]: To be published 
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4.3. Recommendations 
The aforementioned conclusions and discussion points have led to the following suggestions for future 

research and implementation.  

• We recommend to repeat the analysis of this report with 2 datasets:  

o The RACMO dataset as generated for the KNMI 2014 climate scenario’s. This dataset 

also consists of 16 members for the 1950-2014 period; however the driving GCM differs 

from the one used in the KNMI 2023 case (EC-Earth2.3, that differs in resolution, land-

use and parameterizations). If – despite these differences – the estimation of the GEV 

shape parameter agrees with the values as presented now, it is a strong indication of 

the robustness of the derived shape parameter  

o The SEAS5 dataset (see Van Voorst & Van den Brink, 2021), which consists of 8,500 

years of data. This dataset is fully independent of the RACMO data, and also 

considerably larger. Again, reproduction of the shape parameter will strongly confirm 

the reliability of the model data. Also, the length of the dataset allows for a more 

thorough investigation of the behaviour of summer and winter events (although the 

resolution of SEAS5 is lower than that of RACMO).  

• If the analysis of the suggested datasets confirms the findings of the current study, it is 

recommended to use the RACMO data (combined with wflow discharge calculations) for design 

criteria. A hybrid solution is to use the RACMO shape parameter and derive the location- and 

scale (GEV) parameter from the observational data in order to find an optimal balance between 

statistical- and model uncertainty.  

• An in-depth analysis of the meteorological situations that lead to the most extreme precipitation 

events (or, even better: the most extreme discharge events) may shed new light on the 

dynamical aspects that leads to these extreme situations; this may also help to understand the 

July 2021 situation, or the existence of a potential double population. 

• A logical and interesting follow-up of the current research is to examine the effect of climate 

change on the (extreme) precipitation amounts and corresponding discharges. The RACMO 

dataset also contains 16 ensemble members for resp. the ssp126, ssp245 and ssp585 Shared 

Socioeconomic Pathways (SSPs), up till 2120 (ssp126 and ssp245) or 2165 (ssp585). This gives 

the opportunity to determine the effects of those SSP’s on the climate in the Meuse area. Also 

here, the role of the dew point temperature can be investigated.  

• As the domain of RACMO is much larger than the Meuse area, other basins like the Rhine and 

the Vecht can also be used as study area to repeat this study. Besides, the extensive RACMO 

domain allows for the analysis of the coincidences of high discharges on the Meuse and the 

Rhine, or coincidences of high discharges and large storm surges.  
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6. Appendices 
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6.2. Daily cycles 

6.2.1. Calendar year 
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6.2.2. Summer half year 
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6.3. Annual extremes 

6.3.1. Daily 
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6.3.2. 5-daily 
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6.3.3. Hourly 
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6.4. Weather generator 

6.4.1. Daily 
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6.4.2. 5-daily 
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6.5. Return period tables 

6.5.1. 2-day sum 

RP (years) 1 10 100 1000 10000 100000 ~1400 

Meuse 36.0 53.3 71.9 91.9 113.8 137.6 124.4 

St. Mihiel 38.0 58.9 81.1 105.0 121.0 145.8 136.7 

Chiers 42.1 62.9 83.6 104.2 126.5 148.9 114.7 

Stenay 40.7 62.3 85.6 110.7 138.0 168.5 159.5 

Chooz 43.7 64.2 85.1 106.3 131.7 157.4 156.7 

Semois 49.8 74.5 99.4 124.5 146.8 171.7 134.4 

Viroin 41.0 62.3 85.0 109.3 141.9 175.8 156.6 

Namur 37.7 57.8 80.5 106.2 145.0 186.5 175.4 

Lesse 41.6 63.5 87.3 113.1 149.4 187.5 160.4 

Sambre 37.0 57.2 79.6 104.5 134.3 168.2 127.7 

Ourthe 41.3 64.6 91.0 120.9 155.7 196.4 143.0 

Ambleve 46.2 75.4 110.4 152.5 193.8 251.4 250.4 

Vesdre 48.1 80.9 121.4 171.7 212.2 276.7 349.9 

Mehaigne 35.8 57.9 85.5 119.8 157.8 207.8 134.9 

Liege 37.3 59.8 87.7 122.4 156.6 204.0 141.1 

Jeker 36.0 58.5 86.0 119.5 154.3 200.3 141.1 
 

6.5.2. 3-day sum 

RP (years) 1 10 100 1000 10000 100000 ~1400 

Meuse 43.7 63.5 84.3 106.4 133.2 159.5 139.9 

St. Mihiel 45.1 68.8 94.3 122.0 133.1 156.6 144.8 

Chiers 50.6 74.4 97.5 119.9 146.9 171.3 128.6 

Stenay 48.7 73.7 100.4 128.8 155.4 186.2 180.7 

Chooz 52.6 75.8 98.8 121.8 151.9 179.0 171.0 

Semois 60.5 89.2 117.3 144.9 175.0 203.7 146.8 

Viroin 48.7 72.2 96.8 122.4 156.2 189.0 168.8 

Namur 44.8 66.9 91.4 118.5 158.1 197.7 187.1 

Lesse 49.7 74.2 100.5 128.6 169.8 209.8 173.1 

Sambre 43.7 65.9 90.5 117.9 147.0 180.1 147.2 

Ourthe 49.4 75.5 104.8 137.7 177.5 221.7 160.5 

Ambleve 55.3 87.6 126.3 172.4 215.2 274.4 262.0 

Vesdre 57.1 93.0 137.3 192.0 236.0 304.6 357.9 

Mehaigne 42.1 66.0 94.3 128.1 167.7 214.6 149.2 

Liege 43.9 68.7 99.6 138.0 171.0 218.0 153.3 

Jeker 41.9 66.9 96.7 132.2 166.9 211.9 142.2 
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6.5.3. 5-day sum 

RP (years) 1 10 100 1000 10000 100000 ~1400 

Meuse 56.9 80.7 105.7 131.6 158.1 184.7 156.6 

St. Mihiel 57.1 83.4 109.2 134.5 150.8 172.5 155.2 

Chiers 65.3 94.1 120.4 144.5 175.4 201.1 145.5 

Stenay 62.4 91.4 119.3 146.2 178.6 208.2 193.8 

Chooz 67.6 97.3 127.1 156.9 180.9 208.6 187.6 

Semois 78.3 114.7 148.0 178.5 211.7 242.6 175.5 

Viroin 61.8 89.8 118.2 147.1 177.9 209.0 185.8 

Namur 56.9 82.5 109.3 137.2 174.2 208.9 202.3 

Lesse 63.4 92.5 122.2 152.7 194.0 232.2 186.8 

Sambre 54.9 80.4 106.7 134.0 163.5 193.8 165.8 

Ourthe 62.7 92.8 124.9 159.4 200.9 243.0 175.2 

Ambleve 70.0 106.9 148.8 196.3 242.3 299.6 270.8 

Vesdre 71.6 111.9 159.5 215.6 261.9 328.5 363.5 

Mehaigne 52.3 78.9 108.8 142.3 179.3 220.2 171.4 

Liege 55.4 83.0 113.8 148.0 185.3 226.4 163.6 

Jeker 52.2 79.9 110.9 145.6 180.5 220.9 153.1 
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6.6. RACMO ensembles & confidence intervals 

6.6.1. Daily 
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6.6.2. Hourly 

 



 

83 
 

 



 

84 
 

6.6.3. 6-Hourly 
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6.7. GEV distributions 

6.7.1. Daily 
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6.7.2. 5-daily 

 



 

89 
 

 



 

90 
 

6.7.3. Hourly 
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6.8. Seasonal influence 

6.8.1. Daily 
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6.8.2. 10-daily 
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6.8.3. Hourly 
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