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Summary  
This report investigates the potential of various rainfall forecasting products in accurately predicting 

flash flood discharge events across several catchments in the Meuse basin. The rainfall forecasting 

products include Nowcasting, Numerical Weather Prediction, and Blended Forecast. Conceptually, 

the Blended Forecast product optimally combines the short-term prediction accuracy of the 

Nowcasting product with the medium-term accuracy of the Numerical Weather Prediction product. 

The wflow_sbm hydrological model is employed for each rainfall forecasting product to calculate 

river discharges. This report evaluates each model's effectiveness in offering early warnings for flood 

events.  

 

Findings reveal that, in general, a substantial benefit of using probabilistic forecasts as opposed to a 

determinist forecast. The Blended Forecast product provides the earliest warnings during stratiform 

and convective rainfall events. The combination of stratiform and convective rainfall during the July 

2021 flood event, results in a more nuanced picture. With Blended Forecast performing providing 

early warnings for the Geul and Rur catchments, but to a lesser extent than the Numerical Weather 

Prediction model for the Vesdre catchment. This emphasizes that the results are case specific, 

depending on the selected rainfall event and catchment.  

 

The results underscore the potential of integrating Blended Forecasting into operational flood early 

warning systems, leveraging the combined strengths of the Nowcasting and Numerical Weather 

Predictions to enhance prediction accuracy, rapid forecast updates, and skillful lead times. To this 

end, this work package has successfully developed a beta version of a flash flood early warning 

system for several tributaries of the Meuse and provides recommendations for the operational 

implementation of such a system for the tributaries of the Meuse. 
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1 Introduction 
 

In July 2021, flash floods ravaged the Netherlands, Belgium, and Germany, resulting in over 240 

fatalities and an estimated 245 billion USD in damages (AON, 2021; (Koks et al., 2022; Kreienkamp et 

al., 2021). These floods stemmed from a persistent mesoscale low-pressure system over 

Northwestern and Central Europe. The affected catchments are characterized by minimal lag times 

between intense rainfall events (Berne et al., 2004; Gaume et al., 2009). The subsequent surge in 

water discharge and levels intensified the calamity's scope and destructive impact, see Figure 1. 

 

 
Figure 1: Flood damages in Schuld, Germany (Source: Reuters). 

 

The July 2021 floods highlight the challenges water managers face, even in countries theoretically 

equipped to implement robust flood risk adaptation strategies (Jongman, 2018). For improved crisis 

decision-making, accurate flash flood early warning systems (FFEWS) are essential. These systems 

predict floods and extend lead times for decision making, bolstering the ability to anticipate and 

address imminent flash floods. The resulting investments in flood early warning systems (FEWS) can 

result in very favourable cost-benefit ratios of approximately 1:400 per Euro invested depending on 

the country and frequency of flood occurrence (Pappenberger et al., 2015). To reduce monetary 

damages and mortality rates to hazardous events, the United Nations started in 2023 the Early 

Warnings for All agenda to ensure climate justice and to stress the importance of early warnings 

(UNDRR, 2022). 

 

The Work Package (WP) titled “A beta version of a flash flood early warning system for several 

Meuse tributaries” is a pilot initiative focused on enhancing current FFEWS. By leveraging recent 

advancements in short-term rainfall forecasting and hydrologic/hydraulic modelling, the WP 

constructed a beta FFEWS tailored for multiple Meuse tributaries. This system underwent testing and 

evaluation to assess its viability for operational deployment. The WP's integration of cutting-edge 

meteorological and hydrological forecasting techniques holds promise to achieve longer lead times 
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for decision-makers to act during crises. The WP aims to achieve this by analysing the advantages and 

limitations of current rainfall forecast products and by leveraging their combined strengths. 

 

Project Deliverable 

The deliverable evaluates three rainfall forecasting products and their impact on discharge forecast 

accuracy during three extreme rainfall events, including July 2021, across five catchments in the 

Netherlands, Belgium, and Germany. The rainfall forecasting products are used to drive the  

wflow_sbm hydrological model (van Verseveld et al., 2022) to produce river discharge forecasts. The 

models, the combination of each rainfall forecasting product and the wflow_sbm hydrological model, 

are extensively tested to underscore the potential benefits of the proposed FFEWS beta system and 

its suitability for real-world applications. 

 

The report details the project's methodology, testing, and evaluation of the FFEWS beta system. All 

data and scripts, compliant with the European Union's FAIR data management principles, are 

accessible at: https://doi.org/10.4121/a91158d6-887f-4d6c-bc17-fc79d73809e7.v1.  

 

This Work Package (WP) is a segment of the European Interreg EMFloodResilience Project. Key 

collaborators include Delft University of Technology (NL), Waterboard Limburg (NL), and Waterboard 

Eifel-Rur (DE). 

 
Activities 

To achieve the project deliverables, the following key activities were undertaken: 

1. Data Collection: Comprehensive data gathering encompassed meteorological, hydrological, 

and geographical aspects. 

2. Modelling Setup: The modelling chains were established using three distinct rainfall 

forecasting products and the wflow_sbm hydrological model. 

3. Testing and Evaluation: Three historical extreme rainfall events were used to test and 

evaluate the modelling chains. 

4. Collaboration with Partners: Active collaboration was fundamental to the project's success: 

o Researchers attended multiple strategic meetings in the Netherlands, Belgium, and 

Germany, facilitating the exchange of expert knowledge, findings, and data. 

o Waterboard Limburg contributed data vital for the testing and evaluation of the 

modelling chain. 

o Waterboard Eifel-Rur provided crucial insights to refine the modelling chain 

specifically for the Rur catchment. 

o The Royal Meteorological Institute of Belgium contributed data vital for creating the 

rainfall forecast products. 

 

 

 

 

 

 

 

 

https://doi.org/10.4121/a91158d6-887f-4d6c-bc17-fc79d73809e7.v1
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2 Data and Methodology 
2.1 Case Study Area  
The following five catchments, tributaries of the Meuse River spanning the Netherlands, Belgium, 

and parts of Germany, have been selected as case studies for the evaluation of the FFEWS beta 

system (see Figure 2): 

Geul (344 km²): 

• Location & Topography: The Geul catchment stretches across the Netherlands, Belgium, and 
small parts of Germany, particularly near the three-border region. The catchment is 
characterized by a pronounced gradient, descending about 250 meters across a span of 
roughly 60 km. 

• Average Annual Specific Discharge: The Geul has an average annual specific discharge 
measuring around 391 mm y-1. 

• Characteristics: Due to its reliance on rainfall, the discharge from the Geul displays significant 
variability. During drought conditions, discharge can be as low as 1 m³ s⁻¹, whereas in 
flooding scenarios, it might surge to over 40 m³ s⁻¹. 

Rur (2354 km²): 

• Location & Topography: The primary expanse of the Rur catchment is situated in western 
Germany, while smaller segments of it stretch into Belgium, accounting for 6.7 % of its 
overall area, and the Netherlands, making up 4.6 % of the area (Bogena et al., 2018). The 
elevation within the Rur catchment varies widely. In the south, it reaches 680 meters above 
mean sea level, while in the north, it is 30 meters above sea level. 

• Average Annual Specific Discharge: 309 mm y-1 
• Characteristics: 

o Upper Catchment (South - Eifel Region): This part of the Rur catchment is distinct 
due to its steep, forest-covered slopes, bedrock foundations, and the presence of 
large reservoirs. 

o Lower Catchment (North): This northern part is defined by its urban, agricultural, 
and industrial land use. The region has permeable aeolian deposits and mining pits 
that affect groundwater levels (Bogena et al., 2005; Pyka et al., 2016). 

Demer (2268 km²): 

• Location: The Demer catchment acts as a tributary to the river Dijle, which subsequently 
merges with the river Scheldt. 

• Average Annual Specific Discharge: Demer records an average annual specific discharge of 
approximately 193 mm y-1. 

• Characteristics: A noteworthy feature within the catchment is the Hasselt channel. Its 
presence adds complexity to hydrological modelling related to the broader catchment. As a 
result, most modelling activities, including this study, often utilize the sub-catchment leading 
up to Hasselt, which covers an area of around 136 km². 
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Vesdre (685 km²):  

• Location & Topography: Within the Belgian Ardennes, the Vesdre catchment is notable for 
its steep terrain that results in swift hydrological responses. 

• Contribution: The Vesdre feeds into the Ourthe basin, which subsequently merges with the 
river Meuse in Liège, Belgium. 

• Average Annual Specific Discharge: The Vesdre has an average annual specific discharge 
estimated at 525 mm y-1. 

• Characteristics: Two key reservoirs, Eupen and La Gillepe, play a significant role in shaping its 
hydrological behaviour. 

Dommel (1691 km²): 

• Location & Topography: The Dommel catchment has its origins in northern Belgium. It 
meanders through the Netherlands, ultimately merging with the river Meuse in proximity to 
's-Hertogenbosch. The terrain of the Dommel catchment is mainly flat. 

• Average Annual Discharge: The Dommel catchment displays a mean annual discharge of 
approximately 261 mm y-1. 

• Characteristics: The Dommel catchment is characterized by sandy soils and slow hydrological 
responses. 

The locations and boundaries of these catchments are illustrated in Figure 1. 

 
 

Figure 2: Locations of the five selected catchments, highlighted in orange. Note: Only the section of the Demer 

catchment up to Hasselt is displayed, as this specific area is the focus of this report. 
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2.2 Extreme Rainfall Events 
Three extreme rainfall events from 2021 are considered for analysis (namely, events in January, June, 

and July), each exhibiting a distinct rainfall pattern (stratiform, convective, or a combination of both) 

that contributed to flooding in varying degrees across the five catchments. Stratiform rainfall occurs 

when large air masses rise as larger-scale winds and atmospheric dynamics force them to move over 

each other, resulting in a more uniform cloud cover. These systems are in general less intense and of 

shorter duration than convective rainfall events, which occur when air rises vertically. The unique 

attributes of the selected events are outlined in Table 1. 

 

The specific extreme rainfall events of 2021 (Imhoff, 2022): 

- The January event is recognized as a typical winter stratiform episode. This event caused 

moderate to high rainfall sums. 

- The June event is marked by convective dynamics, featuring small-scale, concentrated 

rainfall cells that led to localized (flash) flooding in the western Geul and eastern Demer 

areas. 

- The July event stands out as an unprecedented and extreme rainfall event, resulting in 

catastrophic flooding in the larger area. This event is defined by a sustained mesoscale 

system encompassing both stratiform and convective rainfall patterns (Journée et al., 2023; 

Tradowsky et al., 2023). 

 
Table 1: Overview of the three extreme rainfall events investigated in this report, table based on Imhoff 
et al. (2023).  

Time event (UTC) Rainfall Pattern Catchment-average rainfall sum (mm) 

Start End  Vesdre Demer Geul Dommel Rur 

27/01/2021 23:00 29/01/2021 09:00 Stratiform  (S) 30.6 20.7 27.7 30.6 32.7 

29/06/2021 11:30 30/06/2021 11:30 Convective (C) 30.9 54.5 28.8 9.6 34.5 

12/07/2021 22:00 15/07/2021 21:00 S/C 131.5 92.0 109.2 101.9 102.0 

       

2.3 Rainfall Forecast Products 
This section describes the rainfall forecast products that are evaluated based on the potential for 

accurately forecasting discharges during extreme rainfall events. First the individual products are 

briefly described, followed by a summary of the potential advantages and limitations of these 

products.   

 

2.3.1 Numerical Weather Prediction Models 
Introduction to Numerical Weather Prediction models 

Numerical Weather Prediction models (NWPs) are computational tools developed to describe 

complex atmospheric dynamics. These models enable meteorologists to evaluate current weather 

conditions and predict forthcoming atmospheric changes. Typically functioning on broader spatial 

and temporal scales, organizations such as the European Centre for Medium-range Weather 

Forecasts (ECMWF) supervise the development, maintenance and operation of these models. They 

produce global weather forecasts spanning up to ten days in advance. 

 

Application in Local Meteorological Offices 

These broad-scale NWPs are instrumental for local meteorological offices, offering boundary inputs 

for region-specific predictions. By leveraging smaller-scale NWPs, these offices produce finely-tuned 
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forecasts targeting particular geographic regions. Such refined predictions offer increased spatial and 

temporal resolutions, covering periods ranging from +12 to +72 hours. It is therefore important to 

make note that in this study NWP refers to local meteorological office implementations. 

 

Case Application: The Royal Meteorological Institute of Belgium (RMI) 

In the context of this study, the rainfall forecasts were sourced from a NWP system affiliated with the 

Royal Meteorological Institute of Belgium (RMI). The selection of the RMI-NWP was based on its 

comprehensive coverage of the study area, relative to other national meteorological institutions. The 

ALARO variant of the NWP system, an advancement from the ACCORD-developed ALADIN model, is 

employed by the RMI. Key attributes of this system include a spatial resolution of 1.3 km over a 

548x548 grid. The system’s forecasts are updated four times daily and forecast up to 48 hours in 

advance. An operational quality of the ALARO NWP model lies in its temporal precision, capable of 5-

minute intervals (Bubnová et al., 1995; Termonia et al., 2018). 

 

Limitations of NWPs in Rainfall Predictions 

The NWP models have seen impressive refinements in their predictions. This includes extending lead 

times for accurate extreme event predictions in the medium-range (Bauer et al., 2015).  An 

improvement in predictive skill is also present for rainfall events with shorter lead times (a window of 

up to six hours), altough their predictions remain suboptimal for flash flood forecasting. This 

limitation is particularly evident in smaller catchments or urban contexts (Bowler et al., 2006). 

Challenges like coarse temporal granularity, infrequent updates, and the ensuing inability to pinpoint 

the precise timing and location of rainfall pose significant challenges (Berenguer et al., 2012; Lin et 

al., 2005; Roberts & Lean, 2008). The infrequent update intervals, typically every 3 to 6 hours, 

coupled with output dissemination delays of 2 to 4 hours, further accentuate the limitations. In 

dynamic weather scenarios, especially during convective events, this latency can introduce significant 

errors. 

 

2.2.2 Radar Rainfall Nowcasting 
Introduction to radar rainfall nowcasting 

Radar rainfall nowcasts (Nowcasting) relies on remotely-sensed quantitative rainfall estimates, using 

an ensemble of statistical methods to project future rainfall patterns (Pierce et al., 2012). This 

technique has evolved into commercial ventures, including mobile apps that offer real-time rainfall 

estimates and short-term predictions. The main strength of nowcasting lies in its ability to utilize 

high-resolution remotely sensed data, both spatially (around 1 km) and temporally (every 5 minutes) 

from weather radars (Overeem et al., 2009; Serafin & Wilson, 2000). In contrast to slower NWP 

models, nowcasting models are fast, producing results rapidly. Instead of relying on a comprehensive 

numerical modelling of the land-atmosphere system, nowcasting utilizes statistical projections, which 

(through stochastic perturbation) also allows for ensemble prediction. For convective rainfall cells, 

nowcasting is most effective for lead times less than 30 minutes, whereas it can predict up to 6 hours 

ahead using a network of weather radars for prolonged stratiform events on a continental scale. 

 

Methodology 

Modern nowcasting employs ensemble techniques, where multiple model runs (ensemble members) 

with slightly different initial conditions or physics are used. Weather, particularly rainfall, is 

inherently uncertain due to the chaotic nature of the atmosphere. Small inaccuracies in observations 

or initial conditions can result in significant differences in predictions, especially over short 

timescales. A probabilistic approach accounts for this uncertainty by providing a range of possible 
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outcomes with associated likelihoods. In this study, we employ 48 members that constitute the 

ensemble.  

 

The Nowcasting methodology can be roughly divided into four stages (Imhoff, 2022): 

1. Advection Field Determination: This involves gauging the direction of the observed rainfall 

fields. 

2. Rainfall Development: A statistical evaluation is performed to track the evolution of rainfall 

over time. 

3. Projection: Rainfall fields are extrapolated into the future. 

4. Post-processing: After forecasting, an interpolation returns the output to the observation 

grid. 

 

Application in the Work Package (WP) 

The WP employs data from the Royal Meteorological Institute of Belgium (RMI) to create its 

nowcasting model. Specifically, it harnesses radar-based rainfall estimates. These estimates combine 

data from five distinct C-band weather radars (Imhoff et al., 2023). Before application, radar rainfall 

estimates undergo bias corrections in order to get closer to the true rainfall amount and in that way 

become useful for hydrological purposes. The methods for these corrections are detailed in 

Goudenhoofdt & Delobbe (2016). The Nowcasting forecast product is created using the “STEPS” 

nowcasting method of the pySTEPS platform (Pulkkinen et al., 2019). 

 

2.2.3 Blended Rainfall Forecast 
Introduction to blended rainfall forecasts 

This WP conducts a thorough assessment of the advantages and limitations associated with the 

Nowcasting and NWP models. The aim is to combine the strengths of both products optimally, 

resulting in the creation of the Blended Forecast product. This product seeks to offer skilful short-

term rainfall forecasts crucial for flash flood early warning systems while maintaining accuracy for 

longer lead times.  

 

Methodology 

The technique of merging multiple forecasts is commonly referred to as "blending," as documented 

in several studies (Atencia et al., 2011; Bailey et al., 2014; Bowler et al., 2006; Golding, 1998; Kober et 

al., 2012, 2014; Nerini et al., 2019; Radhakrishnan & Chandrasekar, 2020; Yoon, 2019). "STEPS" 

(Short-Term Ensemble Prediction System) blending is a more specific methodology used in blending 

radar rainfall nowcasts with longer-term forecasts (Bowler et al., 2006; Seed et al., 2013): 

 

1. Stochastic Generation: The STEPS approach involves generating a number of short-term 

forecasts (ensemble) using radar data (Nowcasting). Each of these ensembles is based on a 

slight variation of the observed data, introducing a range of possibilities and capturing the 

inherent uncertainty in the short-term future. 

2. Weighting of Ensembles: The forecasts created from radar observations have varying 

probabilities. Those closer to the recent radar observations are given more weight, whereas 

those that deviate significantly are weighted less. 

3. Combining with NWP: As the forecast period progresses beyond the immediate short term, 

the weighted radar nowcast ensembles are gradually blended with outputs from numerical 

weather prediction models (NWP). This is done to smoothly transition from the high-
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resolution, short-term predictions of the radar to the coarser but longer-term predictions of 

the NWP models. 

4. Dynamic Adjustment: The STEPS system adapts based on evolving conditions. As new radar 

observations are made, the ensemble forecasts are updated including their weights, ensuring 

they remain as accurate and relevant as possible. 

5. Bias Correction: The latest real-time observations are used to adjust the blended forecasts to 

align them better with observed rainfall patterns. 

 

The essence of STEPS blending lies in its ability to represent the uncertainty in the immediate future 

and to combine that with the predictive power of numerical models to provide a seamless and 

adaptive rainfall forecast product.  

 

Application in the Work Package (WP) 

The WP employs the STEPS blending method to capitalize on the skill of the Nowcasting for short-

term predictions and statistically blends them, depending on the type of rainfall system, with the 

better predictive capabilities of the NWP for medium-range forecasts.  

 

2.2.4 Advantages and Limitations of the Rainfall Forecast Products 
The forecast innovation central to the FFEWS beta system is rooted in the STEPS blending approach, 

a method integrating both radar-based rainfall nowcasting models and Numerical Weather 

Prediction (NWP) models. This approach, termed the "Blended Forecast," leverages the strengths of 

both aforementioned models to offer improved flash flood early warnings. Similar to the Nowcasting 

product the Blended Forecast product consists of 48 ensemble members. The main advantages and 

limitations are: 

 

• Radar-based Rainfall Nowcasting Models (Nowcasting) 

o Advantages: Provides real-time or near-real-time monitoring and short-term 

predictions, making it useful for immediate flood risk assessment and response. 

o Limitations: Typically limited to short lead times, often up to 6 hours, and may not 

capture the full complexity of larger weather systems. 

• Numerical Weather Prediction Models (NWP) 

o Advantages: Can offer forecasts for extended periods, thereby giving ample 

preparation time for potential flood events. 

o Limitations: May not be as precise for immediate short-term predictions as 

compared to Nowcasting. 

• Blended Forecast Models 

o Advantages: This methodology seamlessly integrates the Nowcasting model, which is 

precise for short lead times, with the NWP model that offers forecasts for more 

extended periods. The combination aims to provide a continuum of reliable 

predictions, thereby enhancing flood early warning systems' efficiency. 

o Limitations: Sensitive to the weighting of “blending” the Nowcasting and NWP 

models. 

 

A concise overview of the conceptual advantages and limitations of the three rainfall forecast 

products can be found in Table 2 and Figure 3. 
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Table 2: Overview of the conceptual advantages and limitations of the rainfall forecast products. 

Rainfall Product 
Spatial-Temporal  

Resolution 
Delivery Time 

Short Term 

Forecast 

Long Term 

Forecast 

Radar ++ ++ -- -- 

Nowcasting ++ ++ ++ -- 

NWP -- -- - ++ 

Blended  + + ++ ++ 

 

 
Figure 3: Schematic overview of the rainfall forecast skill as a function of lead time for the rainfall forecast 

products. In grey the Numerical Weather Prediction (NWP), in green the Nowcasting, and in blue the Blended 

Forecast. The forecast skill and lead time are case-specific. Note that the Blended Forecast optimally combines 

the high forecast skill of Nowcasting for short lead time with high forecast skill of NWP with long lead time. 

Figure is taken from Imhoff (2022). 

 

2.3 Discharge Forecasting 
The potential improvement of the Blended Forecast for discharge forecasting is assessed using the 

distributed wflow_sbm hydrological model (van Verseveld et al., 2022). The term "distributed" refers 

to the modelling grid, which subdivides the catchment into 1x1 km grid cells. A common alternative 

approach is to apply a conceptual model that divides the catchment in areas based on the availability 

of discharge observation stations. The benefit of employing a distributed hydrological model is that 

the spatial distribution of the rainfall fields is better captured in the numerical calculation of the 

states and fluxes that ultimately lead to river discharge. The wflow_sbm model is selected due to its 

integration in existing operational flood early warning systems (FEWS).  

 

Between the start and the end of the rainfall event, every 15 minutes an “issue time”, the moment at 

which the model run starts based on new rainfall predictions, is initiated by the hydrological model 
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for each rainfall product (Nowcasting, NWP, Blended Forecast). The modelling chain then calculates 

the discharge forecast 12 hours ahead using a 5-minute temporal resolution (model timestep), see 

Figure 4.  

 

 
Figure 4: Schematic overview of (a) the temporal discretization of the event in issue times of 15 minutes 

between the start and the end of the extreme rainfall events. The events are based on the 12 hour period before 

the peak discharge occurrence. (b) The temporal discretization of the issue time in model time steps showing 

the 5 minute temporal resolution between the start and the end of the forecast.  

 

To discern the impact of the individual rainfall product’s forecast skill on forecasted discharge 

simulations, a reference discharge simulation is produced. The wflow_sbm hydrological model is 

driven by the observed bias-corrected radar rainfall data to produce the best estimate of discharge. 

This reference product serves as the baseline for evaluating the discharge forecasts instead of relying 

on actually observed discharges. This approach is taken due to the severity of the flood events which 

resulted in discharge measurement disruptions at observation stations. In addition, it reduces the 

influence of various sources of uncertainty, such as initial states, model configurations, 

parameterization, and calibration (Clark et al., 2017). A schematic overview of the modelling chain, 

that includes the forecasted discharge and reference discharge simulations, is provided in Figure 5.  
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Figure 5: Schematic overview of the modelling chains employed in this study. In green the modelling chain of the 

rainfall forecast products that produce discharge forecasts is shown. In red the reference discharge simulations 

modelling chain based on observed bias-corrected radar rainfall is shown. Both the rainfall products and the 

observed radar rainfall are used to drive the wflow_sbm hydrological model. Subsequently, sets of forecasted 

discharge and reference simulations are produced that are used to evaluate the modelling chain’s forecast skill.  

 

First, reference discharge observations are created using the observed radar data that is bias-

corrected using rain gauges, see Figure 5. The forecasted discharges of the wflow_sbm hydrological 

model based on the three rainfall products (Nowcasting, Numerical Weather Predictions, Blended 

Forecast) is evaluated against these reference simulations. The evaluation is based on the most 

downstream discharge observation station for each of the five catchments. The Demer catchment is 

an exception as the evaluation is based up to the Hasselt station. Table 2 shows the station used for 

each catchment and their respective upstream areas. 

 
Table 2: Discharge stations used for validation per catchment and their respective upstream areas. 

Catchment  Station used Upstream area (km2) 

Demer Hasselt 136 

Geul Meerssen 323 

Vesdre Chaudfontaine  685  

Dommel Vught 1691 

Rur Stah 2346 
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The nature of the three discharge forecast models differ. The NWP forecasts are deterministic, 

meaning that they only contain one outcome per forecast. The Nowcasting and Blended Forecast are 

ensemble forecasts (probabilistic), with 48 different realizations (forecasts) made to take the 

uncertainty of the forecast into account. The assessment of discharge forecast quality is based on 

hydrographs, timeseries of discharge observations and simulations, of each issue time between the 

start and end of the rainfall event. To illustrate, Figure 6 depicts the hydrograph of the June 2021 

flood event within the Geul catchment at the Meerssen observation station. 

 

 

 
 

Figure 6: Example hydrograph of the July 2021 flood event in the Geul catchment at the Meerssen 

discharge measurement station. The reference discharge simulation is indicated in black, with the 

discharge peak at approximately 14:00 UTC on 07-14-2021. The deterministic NWP, the dashed 

purple line, shows an underestimation compared to the reference simulation. The probabilistic 

forecast products show the ensemble median in bold colors and the shading 25th and 75th percentile 

of the ensemble distribution. Orange indicates the Blended Forecast and green the Nowcasting.  

 

Figure 6 portrays the deterministic essence of NWP forecast (dotted purple line) and reference 

observations (black line), presented as single lines. The Nowcasting and Blended Forecast adopt a 

probabilistic ensemble approach that exhibit a spectrum of potential discharge values. This results in 

a plume of predictions due to considering 48 distinct model realizations. The median values, 

indicative of a 50 % consensus among realizations, are represented by the bold lines, while the 

extent of variation between the 25th and 75th percentiles is depicted by the lighter shading.  

 

2.4 Validation Metrics 
Multiple validation metrics are used to determine the quality of the FFEWS discharge forecasts. 

These metrics can be categorized into three groups: (1) deterministic skill-based metrics, (2) 

probabilistic skill-based metrics, and (3) contingency skill-based metrics. By conducting the 

evaluation based on these three groups, the WP determines the match between simulations and 

observations as well as the skill in predicting the peak discharges. 
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2.4.1 Deterministic Forecast Skill Metric 
The mean absolute error (MAE) is a metric utilized to measure the accuracy of predictive models by 

computing the average magnitude of errors between predicted and reference or observed values. It 

offers a linear score, where all individual differences have equal weight, making it intuitive and easy 

to interpret. 

 

Mathematically, the MAE is defined as: 

 

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑦�̂� − 𝑦𝑖

𝑛
𝑖=1 |      (Eq. 1) 

 

Where: 

    𝑛 is the total number of observations. 

    𝑦�̂� represents the predicted values. 

    𝑦𝑖  represents the reference observed values. 

     

The summation iterates over all observations, calculating the absolute difference between the 

predicted and actual value for each observation. The MAE then averages these absolute differences 

over all the observations. A smaller MAE indicates a higher accuracy of the prediction, while a larger 

MAE suggests that the model's predictions may be off-target. 

 

2.4.2 Probabilistic Forecast Skill Metric 
The brier threshold score (BTS) measures the accuracy of probabilistic forecasts for binary events, 

specifically in relation to a predefined threshold. This threshold is defined here as 90 % of the peak 

discharge reference simulation value per catchment and extreme rainfall event. It assesses how well 

the forecasted probabilities align with the actual outcomes given an exceedance threshold. 

 

Mathematically, the BTS is defined as: 

 

𝐵𝑇𝑆 =  
1

𝑛
∑ (𝑓𝑖 −  𝑜𝑖)2𝑛

𝑖=1   (Eq. 2) 

 

Where: 

    𝑛 is the total number of forecasts. 

    𝑓𝑖 is the forecasted probability, the fraction of the 48 ensemble members for probabilistic 

forecasts, for the 𝑖th event, exceeding the predefined threshold. 

    𝑜𝑖 is the reference observed outcome for the 𝑖th event, coded as 1 if the event exceeds the 

threshold and 0 otherwise. 

 

The BTS is calculated for each simulation time step (5 minutes) the exceedance threshold of 90 % 

peak discharge is surpassed before averaging over the issue time. This exceedance can consist of 

multiple time steps within an issue time. The BTS ranges from 0 to 1, where a lower score indicates 

better forecast accuracy. A perfect forecast would have a BTS of 0, while a BTS of 0.25 suggests the 

forecast is not better than a random guess. The Brier Threshold Score is particularly useful when 

forecasters or decision-makers are concerned with the occurrence of an event surpassing a specific 

value or level, such as rainfall exceeding a specific threshold. 
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2.4.3 Peak Anticipation Time Metric 
The ability to accurately forecast peak or threshold exceedances in water systems significantly ahead 

of their occurrence is crucial for water management. This anticipation time facilitates preparatory 

measures, enhancing flood risk management and safeguarding resources. Within this study, the peak 

anticipation time (PAT) metric serves as a primary tool for gauging the accuracy of the forecasting 

techniques.  

 

For each issue time a 12-hour forecast is produced and evaluated using the PAT metric, see colored 

lines in Figure 7. To determine the match between forecast simulations and reference discharge a 

window is created around the discharge peak that encompasses 90 % to 110 % of this peak 

discharge. This 10 % margin is assumed as it is generous enough to not overly penalize the forecast 

skill but strict enough to remain relevant for decision-making.  

 

When we utilize probabilistic forecasting methods, individual ensemble members are evaluated 

separately. This results in each issue time containing a variety of anticipation times, stemming from 

the different ensemble predictions. To express the accuracy of these ensemble forecasts, we 

calculate the percentage of ensemble members that correctly anticipate the peak discharge for a 

given issue time, terming this the "percentage of agreement" or consensus. 

 

 

 
Figure 7: Example illustrating the peak anticipation time (PAT) method. The black line represents the 
reference discharge simulation. The colored lines indicate forecast for four different issue times: (a) 
yellow: 14:40 UTC-9 hours before the peak; (b) orange: 17:40 UTC-6 hours before the peak; (c) red: 
18:40 UTC-5 hours before the peak and (d) burgundy: 20:40 UTC-3 hours before the peak. The 10 % 
error margin for characterizing a “correct” peak discharge forecast is shown in the upper right corner 
(adapted from Imhoff et al., 2022).  
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3 Results 
This section begins by presenting the discharge reference simulations based on the three selected 

extreme rainfall events across the five selected tributaries of the Meuse. This is followed by an 

assessment of the deterministic discharge forecast skill of the three rainfall forecast products 

(Numerical Weather Prediction (NWP), Nowcasting, Blended Forecast) using the median value of the 

ensemble prediction. Subsequently, the probabilistic discharge forecast skill based on the whole 

ensemble prediction is assessed. Lastly, the section concludes by examining the peak anticipation 

time (PAT), which quantifies the lead time required for an accurate prediction of the peak discharge. 

Appendix A contains more analyses based on contingency statistics. 

 

3.1 Discharge Reference Observations 
The wflow_sbm hydrological model, driven by gauge-adjusted radar rainfall data, is employed to 

derive discharge reference simulations (detailed in Section 2.3). In Figure 8, see next page, the 

discharge reference simulations for the three distinct rainfall events within the five catchments are 

shown. These catchments showcase diverse responses to heavy rainfall as is exemplified by the fast 

responding Geul and Vesdre catchments in Figures 8a,b and the more gradual reacting Dommel 

catchment in Figure 8e. Similar response patterns are found for the Geul, Rur, and Vesdre 

catchments during the stratiform January 2021 event in Figures 8a,b,d, albeit with varying discharge 

volumes. The same catchments contain a characteristic double peak in the discharge time series of 

the July 2021 event (Figures 8k,l,n). Note that the upcoming analysis excludes the June 2021 event of 

the Dommel due to its unresponsive nature during this event, as shown in Figure 8j, due to the 

absence of a significant rainfall event during this period. 
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Figure 8: The discharge reference simulations obtained by employing the gauge-adjusted radar rainfall data as input to the wflow_sbm hydrological model are 

shown. For the January stratiform rainfall event, panels (a-e) present the estimated discharge reference simulations, with the estimates highlighted in blue and green 

shading indicating the chosen events. The June convective rainfall event's discharge reference simulations are displayed in panels (f-j). Panels (k-o) portray the 

discharge reference simulations concerning the July 2021 flood event, encompassing both stratiform and convective rainfall.  
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3.2 Deterministic Forecast Skill 
The advantages of integrating Nowcasting with Numerical Weather Predictions (NWP) to form the 

Blended Forecast are assessed using the mean absolute error (MAE) metric (see Section 2.3.1). The 

calculation of this metric involves employing the probabilistic ensemble medians of both the 

Nowcasting and the Blended Forecast, while the NWP already functions as a deterministic model. 

The outcomes of this analysis provide insights into the extent of forecast errors in relation to the 

reference simulations. This assessment addresses the level of skill present, the magnitude of volume 

disparities, and the comparative performance of the discharge forecasting models. 

 

The MAE results are shown in Figure 9. When the Nowcasting and Blended Forecast models 

transition from one issue time to the next, there is no temporal memory retained due to the model’s 

initialization relying on the most recent observations. In contrast, the NWP forecasts possess 

temporal memory as the updates to the model’s initialization are less frequent. This update 

frequency is shown by the discontinuities between successive issue times, exemplified by the leap at 

the 8-hour mark in Figures 8a,g,l,m. 

 

The MAE indicates the difference in discharge volume in m3s-1 between the predictions and reference 

simulations. In general, the discharge forecasts of the Demer and Dommel catchments remain within 

a 10 % MAE margin compared to the peak discharge volume of the reference simulations (see Figure 

8). The estimates for the Rur catchment remain within 20 % MAE difference, while the Geul and 

Vesdre catchments exhibit more substantial differences.  

 

The results of the forecast models for the stratiform January 2021 rainfall event are shown in Figures 

9a-e. The Geul catchment results, Figure 9a, show a lower MAE at shorter lead times, between +2hr 

and +5hr, for the Nowcasting and Blended Forecast than the NWP model. The better forecast skill of 

NWP model for longer lead times ( > +5hr) is not fully utilized by the Blended Forecast, although a 

small improvement compared to the Nowcasting model is present. The results of the Rur catchment 

in Figure 9b show that the Blended Forecast model performs best for the longest lead times (> +8hr). 

The Nowcasting and Blended Forecast models result in low MAE values until the +6hr mark, showing 

that these models are capable of predicting discharges in slower responding catchments under 

stratiform rainfall conditions. However, all models show large errors between consecutive lead 

times. The low MAE values for the Demer and Dommel catchments in Figure 9c,e indicate that all 

models predict accurately compared to the reference simulations. The NWP model has the lowest 

MAE values overall for the fast responding Vesdre catchment in Figure 9d. The Nowcasting and 

Blended Forecast models contain much higher MAE values beyond +6hr lead times for this 

catchment.  

 

The June 2021 convective rainfall event results in Figures 9f-i, show higher MAE values than for the 

stratiform event. The NWP model performs best overall for the Geul catchment (Figure 9f). The 

Nowcasting and Blended Forecast models contain very large errors beyond the +11hr lead time. The 

benefits of employing Nowcasting or Blended Forecast models is evident for the Rur catchment 

between +4hr and +8hr lead times (Figure 9g). Here, the NWP model contains very high MAE values 

after the NWP is updated at +7.5hr lead time. The Demer catchment results in Figure 9h show that 

the Blended Forecast performs has the lowest MAE values until the +7hr lead time. Similarly, the 

Blended Forecast has the lowest MAE values for the Vesdre catchment until the +7hr lead time 

(Figure 9i).  
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The July 2021 event results, the combination of stratiform and convective rainfall, in Figures 9j-n 

show similar MAE values as for the convective June 2021 rainfall event. The relative error is smaller 

for the July 2021 event as the predicted discharge volumes are larger (see Figure 8). Therefore, the 

overall performance is better for the July than for the June 2021 rainfall event. Considering the 

individual catchments, the Geul catchment results in Figure 9j indicate that the forecast models 

perform similarly until +6hr lead time, with high MAE values present for the Nowcasting and Blended 

Forecast models at +6.5hr to +7hr lead times. The NWP model contains the lowest MAE values 

beyond the +6hr lead time. For the Rur catchment in Figure 9k, the Blended Forecast shows the 

lowest MAE, the exception is the NWP model between +6hr and +9hr lead times. The Demer and 

Dommel catchment results in Figure 9l,n show lower errors for the Nowcasting and Blended Forecast 

models compared to the NWP model until the +11hr lead time. The results of the Vesdre catchments 

in Figure 9m show lowest MAE values for the NWP model beyond the +3hr mark. This indicates that, 

based on the deterministic analysis, the NWP is expected to perform better than the Blended 

Forecast in this catchment.  

 

Summary 

The Nowcasting and Blended Forecast models exhibit improved forecast skill for short lead times in 

comparison to the NWP, while the latter shows more proficiency for predicting longer lead times (> 

+7hr). Specific catchments, such as the Rur catchment and the Geul and Demer within specific time 

windows, do derive benefits from the blending approach at longer lead times. The challenge of 

accurate prediction during convective or combined rainfall events is underscored by the larger MAE 

values, particularly for longer issue times. The MAE analysis gives a good first estimate of the error 

between forecasts and reference simulations but does not consider the benefits of probabilistic 

forecasting.    
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Figure 9: The mean absolute error (MAE) in cubic meters per second (m3 s-1), with on the horizontal axis the lead time in hours before peak discharge. The Nowcasting 

model is indicated in green, the NWP model in purple, and the Blended Forecast model in orange. For the January stratiform rainfall event, panels (a-e) present the 

MAE results. The June convective rainfall event's MAE results are displayed in panels (f-i). Panels (j-n) portray the MAE results concerning the July 2021 flood event, 

encompassing both stratiform and convective rainfall. 
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3.3 Probabilistic Forecast Skill 
The Brier threshold score (see Section 2.3.2) is used to assess whether the discharge forecasts 

achieve an exceedance of 90 % of the reference simulation peak discharge. This evaluation addresses 

the forecast model’s capacity to predict the discharge peak and to ascertain if ensemble members 

agree on this prediction. The Brier threshold score spans values from the optimal scenario of 0, 

indicating unanimous correct agreement among ensemble members, to the least favourable scenario 

of 1, denoting unanimous disagreement. The Brier score encompasses the entire ensemble forecast 

by averaging over all ensemble members and by averaging over the time steps during which 90 % of 

the reference simulation peak discharge is exceeded. In doing so, the consistency of correctly 

exceeding the threshold is addressed. 

 

The outcomes shown in Figure 10 underscore across all rainfall events, catchments and discharge 

forecast models that there are no instances where all ensemble members fail to exceed 90 % of the 

reference simulation peak discharge. In a broader context, the results reveal better Brier scores 

(lower values) for the stratiform rainfall event (Figures 10a-e) compared to convective events 

(Figures 10f-i) or the combined impact of both rainfall types (Figures 10j-n). This is in line with 

previous findings based on the deterministic MAE analysis in Figure 9.  

 

The results from the stratiform event in January 2021 for the Geul catchment, as presented in Figure 

10a, reveal that both the Nowcasting and Blended Forecast model ensembles surpass the NWP in 

capturing the exceedance threshold. This is especially evident during the shortest (up to +3hr) and 

the longest (beyond +6.5hr) lead times, aligning again with the MAE results in Figure 9a. Similar to 

these results, there is a notable dip in performance for the Nowcasting and Blended Forecast models 

between +4hr and +6.5hr lead times. This is also present between +7hr and +9hr for the Rur 

catchment (Figure 10b) and between +3hr and +5hr for the Vesdre catchment (Figure 10c). These 

shifts in Brier scores are worrying, implying diminished accuracy hours before the peak discharge. 

One plausible reason might be that accurate forecasts with shorter issue times fall within the 

catchment response times, making them essentially an extrapolation of the current catchment 

response to rainfall. As such, the advantages of precise forecasts emerge more prominently after the 

catchment response times have elapsed.  

 

Besides the Dommel catchment results shown in Figure 10e, both the Nowcasting and Blended 

Forecast models consistently show lower Brier scores than the NWP model for longer lead times. The 

opposite was determined by the deterministic MAE findings. This underscores the value of 

probabilistic ensemble forecasting in capturing the reference simulation discharge peak, when 

compared against the deterministic approach of the NWP forecast. 

 

Examining the results of the convective rainfall event (Figures 10f-i), the Nowcasting and Blended 

Forecast models contain lower Brier scores than the NWP model, except for a few prolonged lead 

times. This distinction in Brier scores is less pronounced for the combined rainfall event (Figures 10j-

n), where the NWP model has lower Brier scores for the Geul, Rur, and Dommel catchments (Figures 

10j,k,n) than the Nowcasting and Blended Forecast models, except for the Vesdre catchment (Figure 

10m) and longer lead times of the Geul and Rur Catchments (Figures 10j,k). The latter are especially 

noticeable improvements compared to the NWP model. 
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Summary 

The probabilistic forecast skill analysis, Figure 10, highlights that across all rainfall events, 

catchments, and discharge forecast models, none of the ensemble members fall short of exceeding 

90% of the reference simulation peak discharge. Overall, better Brier scores (lower) are found for the 

stratiform rainfall event (Figures 10a-e) compared to convective events (Figures 10f-i) or the 

combination of both (Figures 20j-n). The results in Figures 10a,b emphasize the Nowcasting and 

Blended Forecast model’s better performance in capturing the exceedance threshold compared to 

the NWP model, particularly for longer lead times (> +7hr). This demonstrates the advantage of 

probabilistic ensemble forecasts over deterministic ones.  

 

For convective rainfall (Figures 10f-i), the Nowcasting and Blended Forecast models generally 

outperform the NWP, except for a few longer lead times. This distinction is somewhat subdued for 

the combined event (Figures 10j-n), where the NWP model excels over the Nowcasting and Blended 

Forecast models, except for the Vesdre catchment (Figure 10m) and longer lead times of the Geul 

and Rur Catchments (Figures 10j,k). This establishes that the findings are rainfall event and 

catchment specific.
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Figure 10: The Brier score results are shown for the 5 catchments, 3 rainfall events, and 3 discharge forecast models. The Brier score uses a threshold set at 90 % of 

the reference simulation discharge peak. A Brier score of 0 signifies the optimal prediction scenario, while a score of 1 represents the least favourable outcome. The 

Nowcasting model is indicated in green, NWP in purple, and the Blended Forecast in orange. Panels (a-e) display the stratiform January 2021 event results. Panels (f-

i), show the June convective rainfall event results. Panels (j-n) focus on the July 2021 flood event, encapsulating both stratiform and convective rainfall. 



 

  

3.4 Peak Anticipation Time 
The Peak Anticipation Time (PAT; see Section 2.3.3) plays a pivotal role in assessing the benefits of 

adopting a Blended Forecast model for FFEWS. Other contingency based statistics include the hit 

rate, false alarm ratio, and critical success index, which are presented in Appendix A. The assessment 

in this section leverages the entire ensemble (comprising 48 realizations) to ascertain the lead time 

for predicting peak discharge of the reference simulations. Strong consensus within the prediction of 

peak discharge indicate likelihood of a flood event. Figure 11 shows the PAT in hours on the vertical 

axis and the three discharge forecast models on the horizontal axis for three rainfall events in the 

Geul catchment. The PAT, expressed in percentages, reflects the consensus among ensemble 

forecasts regarding peak discharge occurrence. Note that the NWP functions as a deterministic 

model, resulting in either 0 % or 100 % agreement.  

 

The interpretation of probabilistic forecasts is difficult as it is can be subjective at which confidence 

level (percentage of ensembles in agreement) decision-makers act. For the following analysis we base 

our interpretation on the actions and personal communications with the Rijkswaterstaat fluvial flood 

forecasting service team. They faced multiple challenges during the July 2021 flood event, such as 

confirmation bias when visual confirmation of a flood was not yet possible (e.g. Demeritt et al., 2010). 

This resulted in attempts to discredit the forecast. A second bias surrounded the decision whether or 

not to initiate certain costs/disadvantages based on an uncertain forecast. Actions were taken by the 

forecast team based on 5 out of 51 ensemble members indicating a severe flood event, a 10 % 

agreement. 

 

In Figure 11a the PAT results of the stratiform January 2021 rainfall event of the Geul catchment are 

shown. The NWP model has a PAT of +8hr before the discharge peak. This anticipation time is 

surpassed by the Nowcasting model, with an ensemble agreement of 29 % at +10.15hr and the 

Blended Forecast model with 31 % agreement at +11.15hr. Although the Nowcasting and Blended 

Forecast ensembles are less consistent over time in PAT agreement percentages than the 

deterministic NWP, a third of the ensemble agreeing on peak discharge is a clear indicator of a likely 

occurrence of a high discharge event. While longer PATs exhibit lower agreement for the Nowcasting 

and Blended Forecast models, they do provide water managers with an early indication of a potential 

significant event. The following interpretation assumes that a probability of 10 % is sufficient for 

authorities based on the actions of Rijkswaterstaat during the July 2021 flood event. 

 

The convective June 2021 rainfall event results in Figure 11b show that the Nowcasting and Blended 

Forecast models exhibit at approximately +10hr PAT, an agreement percentage above 10 %. This is 

5.5hr before the +4.5hr PAT of the NWP model. In addition, a gap of 45 minutes of no agreement on 

peak discharge occurs for the NWP model between +3.15hr and +4hr PAT. This gap is not due to the 

update frequency of the NWP model but due to an underestimation of the peak discharge.  

 

A similar but larger gap in agreement between consecutive PAT is found for the NWP model during 

the combined July 2021 rainfall event results in Figure 11c. Starting with an early warning between 

+10.5hr and +12hr PAT, the following warning occurs only +1hr PAT before the peak discharge. Given 

the focus of this analysis on the discharge peak, an early warning might have occurred as can be 

established by the relatively good MAE results in Figure 9j. Although the Nowcasting and Blended 

Forecast models fall short of a clear early warning, the Nowcasting model has a 10 % agreement on 

PAT at +8.5hr and the Blended Forecast model at +11.5hr. Nonetheless, both models show 

inconsistent and low probabilities leading up to +1hr PAT.  



 

  

 

 
Figure 11: Heatmap displaying the peak anticipation time (PAT) in hours before peak discharge on the vertical 

axis. The horizontal axis shows the discharge forecast models, with in purple the NWP, in green the Nowcasting, 

and in orange the Blended Forecast models. The number of ensemble members agreeing on the PAT per issue 

time ranges from 0 % in white to 100 % in dark blue. The panels show the results for the Geul catchment for (a) 

the stratiform January 2021 event, (b) the convective June 2021 event, and (c) the combined July 2021 event.  

 

Next, we consider the Rur catchment results in Figure 12. The Nowcasting and Blended Forecast 

show strong consensus on a PAT of +11.5hr in Figure 12a. One hour before the NWP model at 

+10.25hr PAT. Both the Nowcasting and Blended Forecast models experience a decline in agreement 

between +8.45hr and +8hr PAT. These results show that all models are capable of producing PATs 

with long lead times in larger catchments under stratiform rainfall conditions.  

 

The opposite is the case for the convective rainfall conditions in Figure 12b. Here, the NWP model 

exhibits a shorter +3.5hr PAT. For the Nowcasting and Blended Forecast models there is an initial 



 

  

early warning at +10.45 PAT with 17 % ensemble agreement. Strong consensus on the occurrence of 

an event with approximately 30 % agreement is present at +9hr PAT. This demonstrates the benefit 

of employing a probabilistic approach for forecasting under convective rainfall conditions.  

 

The combined July 2021 rainfall event in Figure 12c shows a more balanced result with the NWP 

model indicating a PAT of +9.15hr. No early warning is given by the Nowcasting model until +9hr PAT, 

followed by inconsistent agreement percentages up to +5.45hr PAT. The Blended Forecast provides 

an early warning at +12hr PAT with percentages of agreement ranging between 12 % and 19 %. 

Stronger consensus between ensemble members occurs at +5.45hr PAT. This demonstrates the 

benefit of employing a Blended Forecast compared to a Nowcasting approach, as it also takes 

advantage of the information in the NWP product.  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

  

 
Figure 12: Heatmap displaying the peak anticipation time (PAT) in hours before peak discharge on the vertical 

axis. The horizontal axis shows the discharge forecast models, with in purple the NWP, in green the Nowcasting, 

and in orange the Blended Forecast models. The number of ensemble members agreeing on the PAT per issue 

time ranges from 0 % in white to 100 % in dark blue. The panels show the results for the Rur catchment for (a) 

the stratiform January 2021 event, (b) the convective June 2021 event, and (c) the combined July 2021 event.  

 

Shifting focus to the June 2021 rainfall event results of the Demer catchment in Figure 13a, it is 

evident that all models are capable of predicting a consistent +12hr PAT. For the convective June 

2021 result in Figure 13b, the NWP model has a +6hr PAT. The earliest warning is provided by the 

Nowcasting model at +9.5hr PAT followed by the Blended Forecast at +8.5hr PAT. Both show a clear 

improvement over the NWP model, with an average improvement of +3hr PAT. The July 2021 results 

in Figure 13c, demonstrate a +12hr PAT for the NWP model with a 1hr 0 % agreement gap between 

+7.45hr and +8.45hr PATs. The Nowcasting and Blended Forecast models provide an early warning 

around +12hr PAT but show stronger consensus on agreement around +10.45hr. Of interest is that all 

models show 0 % agreement at +8.15hr PAT due to an underestimation of the peak discharge. This 



 

  

could imply an issue with the observations used to initialize the models, showing that consecutive 

agreement between subsequent model lead times should be considered.   

 

 
Figure 13: Heatmap displaying the peak anticipation time (PAT) in hours before peak discharge on the vertical 

axis. The horizontal axis shows the discharge forecast models, with in purple the NWP, in green the Nowcasting, 

and in orange the Blended Forecast models. The number of ensemble members agreeing on the PAT per issue 

time ranges from 0 % in white to 100 % in dark blue. The panels show the results for the Demer catchment for 

(a) the stratiform January 2021 event, (b) the convective June 2021 event, and (c) the combined July 2021 event. 

 

The PAT results of the Vesdre catchment deviate from previous findings. Here, the NWP model 

results in Figure 14a indicate a +12hr PAT. The Blended Forecast model shows an improvement over 

the Nowcasting model at +11.5hr compared to +9.45hr PAT. These results show superior skill by the 

NWP model in forecasting in a fast responding catchment under stratiform rainfall conditions. 

 



 

  

The results shown in Figure 14b again underline the benefit of employing a probabilistic modelling 

approach under convective rainfall conditions. The Nowcasting model provides a +10.15 hr PAT with 

15 % ensemble agreement and the Blended Forecast a +10.45hr PAT with 12 % ensemble agreement. 

The Blended Forecast model shows in the following lead times stronger consensus among ensemble 

members than the Nowcasting model. The NWP model provides a PAT of only +2.5hr before peak 

discharge.  

 

The combined July 2021 rainfall event deviates the most from earlier findings. The NWP model has a 

PAT of +12hr, while the Blended Forecast model provides the first early warning at +11.45hr PAT. The 

first occurrence of strong consensus among the ensemble occurs at +9hr PAT. This is in contrast with 

the NWP model results for the Geul catchment (Figure 11c), where the NWP model did provide an 

early warning at +12hr PAT but lacked consistency for subsequent lead times.  

 
Figure 14: Heatmap displaying the peak anticipation time (PAT) in hours before peak discharge on the vertical 

axis. The horizontal axis shows the discharge forecast models, with in purple the NWP, in green the Nowcasting, 

and in orange the Blended Forecast models. The number of ensemble members agreeing on the PAT per issue 



 

  

time ranges from 0 % in white to 100 % in dark blue. The panels show the results for the Vesdre catchment for 

(a) the stratiform January 2021 event, (b) the convective June 2021 event, and (c) the combined July 2021 event. 

 

Concluding with the Dommel catchment's PAT results, shown in Figure 13a, the findings reveal a 

complete 100 % agreement among all models on the prediction of peak discharge at +12hr PAT. The 

July 2021 event results in Figure 13b show a PAT of +12hr, 2 hours before the Nowcasting model. The 

Blended Forecast also has a PAT of +12hr but is less consistent until +10hr PAT.  Here, we find that 

the NWP model performs best followed by an improvement of the Blended Forecast model over the 

Nowcasting model. 

 
Figure 15 Heatmap displaying the peak anticipation time (PAT) in hours before peak discharge on the vertical 

axis. The horizontal axis shows the discharge forecast models, with in purple the NWP, in green the Nowcasting, 

and in orange the Blended Forecast models. The number of ensemble members agreeing on the PAT per issue 

time ranges from 0 % in white to 100 % in dark blue. The panels show the results for the Dommel catchment for 

(a) the stratiform January 2021 event, (b) the convective June 2021 event, and (c) the combined July 2021 event. 
 



 

  

 

 

Summary 

Throughout the various catchments and rainfall events studied, the Peak Anticipation Time (PAT) 

results have highlighted several patterns. First the stratiform January 2021 rainfall event results show 

perfect agreement among all models on +12hr PAT for the Demer and Dommel catchments.  

 

Based on at least 10 % agreement of the ensemble members on PAT for the Geul catchment, the 

Blended Forecast model best predicts the peak discharge, followed by the Nowcasting model, and 

the NWP model 3 hours later. This large improvement over using the NWP model might affect 

decision making. For the Rur catchment this improvement is +1.75hr, highlighting that the 

Nowcasting and Blended Forecasting models are capable of forecasting for larger catchments. The 

Vesdre catchments results show that the NWP model has a +1.25hr earlier warning than the Blended 

Forecast model. This demonstrates that the results are very case-specific, since the Geul and Vesdre 

are both smaller and fast responding catchments.  

 

The convective June 2021 rainfall event results clearly demonstrate the added value of employing a 

probabilistic forecast (Nowcasting and Blended Forecast) as opposed to a deterministic forecast 

(NWP) due to uncertainty in forecasting convective events. Major improvements are found with 

approximately a +6hr earlier warning for the Nowcasting and Blended Forecast models than for the 

NWP model in the Geul catchment, +7hr earlier waring in the Rur catchment, +3hr in the Demer 

catchment, and +7hr in the Vesdre catchment.   

 

The benefits of probabilistic forecasting for the convective June 2021 rainfall event are less present 

for the combined July 2021 rainfall event. The Geul catchments contained a large inconsistency in 

subsequent NWP model PATs. Therefore, the Nowcasting and Blended Forecast models performed 

considerably better in this catchment. The opposite was the case for the Rur catchment, where the 

Blended Forecast provided an early warning with subsequent inconsistencies in PAT agreement 

percentages. For the Demer, Vesdre and Dommel catchments the NWP model contained the earliest 

and most consistent PATs, indicating that the event was quite well captured by the NWP. 

 

In summary, the NWP model, while robust in certain circumstances, displayed instances of 

limitations in close proximity to some peak discharge events. The Nowcasting and Blended Forecast 

models, on the other hand, frequently showcased an advantage in offering earlier warnings for 

convective rainfall events, thereby taking full advantage of the high update frequency (e.g. every 5 

minutes) that these methods can give in contrast to most NWP models. The Blended Forecast model, 

combining attributes of both NWP and Nowcasting, often emerged as a consistent performer that 

balances early warnings with sustained consensus. However, in catchments with a slower response, 

such as the Dommel, the distinctiveness of the Nowcasting and Blended Forecast models became 

less pronounced for prolonged lead times. While each forecasting model possesses unique 

advantages and limitations, the Blended Forecast model consistently demonstrated efficacy by 

combining early PATs with strong consensus among ensemble members, emphasizing its potential 

utility in real-world applications. 

 

For more contingency based statistics, the reader is referred to Appendix A. 

 



 

  

4 Discussion  
This section first discusses the main findings in relation to employing the Blended Forecast rainfall 

product to drive the wflow_sbm hydrological model for Flash Flood Early Warning Systems (FFEWS). 

Next, we reflect on the shortcomings of the current model setup and analyses. This is followed by a 

discussion on how we envision an operational system based on this work package. Next, we reflect 

on the strengths and challenges of decision making under uncertainty based on ensemble forecasts. 

Lastly, an outlook is provided of the most recent developments in the field of rainfall forecasting.   

 

4.1 Advantages and Challenges of the Blended Forecast Model 
In the context of the selected catchments and rainfall events, the Blended Forecast model has 

repeatedly demonstrated skill in predicting flash floods. For instance, during the stratiform January 

2021 rainfall event, the model accurately predicted the peak discharge for the Geul catchment 11 

hours in advance, 3 hours before the NWP model’s prediction. Together with the Nowcasting model, 

the probabilistic ensemble models, based on at least 10 % ensemble agreement on PAT, consistently 

outperform the deterministic NWP model in providing early peak discharge warnings during the 

convective June 2021 event. For example, the Blended Forecast and Nowcasting models provided 

roughly 6-7 hours earlier warnings for the Geul and Rur catchments. By integrating the strengths of 

both the NWP and Nowcasting models, the Blended Forecast model issues timely warnings while 

ensuring a consistent agreement among ensemble members for diverse events. In addition, the the 

information on the chance of an event occurring by probabilistic ensembles is valuable on its own 

right compared to deterministic forecasts.  

 

The challenges of the Blended Forecast model are present at longer lead times. A challenge is to 

resolve the volume error related to the ensemble median, as highlighted in the MAE analysis in 

Figure 9. In addition, the model should produce more similar results to the NWP model for longer 

lead times of combined rainfall events. For instance, this might improve the skill of providing early 

warnings during the July 2021 event for the Vesdre catchment. The Blended Forecast model might 

therefore be improved by giving more weight to the NWP model at longer lead times when applying 

the blending method.  

 

4.2 Shortcomings of the Beta Version of the FFEWS 
Several shortcomings emerge from the beta FFEWS setup, offering potential for improvement. 

Firstly, the reliance on a single hydrological model is a noticeable constraint. The setup overlooks 

structural model uncertainties, which may bias the outcomes (e.g. Butts et al., 2004). Incorporating 

multiple models not only addresses these uncertainties but also provides a better representation of 

potential variability in discharge forecasts. Secondly, the results may be further biased by depending 

on reference simulations of a single hydrological model for evaluation. The ideal would be to use 

actual observations for assessments that are independent of the model simulations. This, however, 

complicates the distinction between the impacts of various rainfall forecast products on discharge 

forecasts. Thirdly, the NWP considered in this study is deterministic. It should be noted that recent 

advances in NWP development shift towards probabilistic ensemble forecasts. Lastly, while the 

analyses mainly focusses on peak discharge, this might not give a holistic understanding of the 

system's performance. Therefore, Appendix A contains extended analyses based on contingency 

statistics. 

 



 

  

4.3 Interpretation of Ensemble Forecasts 
Ensemble forecasts are an improvement in meteorological and hydrological forecasting 

methodologies. The strength lies in their ability to provide a range of possible future scenarios 

instead of a singular deterministic prediction. By incorporating multiple model initializations, the 

ensemble includes model uncertainties, therefore offering a probabilistic perspective. This facilitates 

better risk assessment as users can gauge the likelihood of different outcomes, allowing for more 

informed and robust decision-making. 

 

Despite the strength of ensemble forecasts, the interpretation of likelihoods can be complex and 

subjective. Many studies have investigated the concept of decision-making under uncertainty (e.g., 

(Kwakkel et al., 2016; Ramos et al., 2013; Zappa et al., 2013). For one, the sheer volume of data 

presented can be overwhelming, especially considering that the 48 model realizations in this study 

can be considered small. Another complexity is understanding the spread of the ensemble. While a 

wider spread indicates higher uncertainty or a smaller spread lower uncertainty, it does not 

necessarily pinpoint which particular outcome within that spread is the most probable. One of the 

main challenges is communicating the nuances of ensemble forecasts to non-experts, such as 

decision-makers or the general public, as misinterpretations can lead to inappropriate actions or 

responses. 

 

A possible solution is to employ a structured approach to streamline the decision making process. 

This can be achieved by not communicating the whole ensemble forecast, but to use techniques like 

clustering to group together similar outcomes, essentially simplifying the decision-making process. If 

agreed upon beforehand, this clustering could even further reduce the ensemble to color codes that 

indicate the uncertainty and the severity of the forecasts. In addition, the results of this study show 

the strength of communicating the additional anticipation time that decision-makers are expected to 

have when implementing flood forecasting improvement. Most importantly, regular training sessions 

for end-users are required to ensure that they remain updated on best practices in ensemble 

forecast interpretation.  

 

4.4 The Operational System: A Glimpse into the Near Future 
To move forward from the “beta” stage of the WP towards an operational system, we envision an 

ideal system that is characterized by several advanced features. In essence, this envisioned 

operational system would be a culmination of modern technology, advanced modelling techniques, 

and user-centric design, aiming to address the multifaceted challenges of water management. This 

system would consist of the following components:  

 

1. Time step 

The system will operate on a highly refined time step, ensuring precision in capturing the 

intricate rainfall dynamics of stratiform and convective systems. In addition, the time step 

needs to be adequate for modelling the hydrological and hydrodynamic response. Leading is 

the availability of high temporal resolution rainfall inputs. Based on the results of this WP, we 

recommend employing the highest possible time step, 5 minutes.  

2. Spatial resolution 

Similar to the time step, the spatial resolution of the modelling grid should encompass the 

spatial variability of rainfall and hydrological processes. The spatial variability of rainfall in the 

Netherlands has a decorrelation-distance of 10 km in Summer (Leth et al., 2021), a 1 km 

spatial resolution should be sufficient. The hydrological processes descriptions of the 



 

  

wflow_sbm are better resolved in steeper catchment at finer spatial scales due to better 

representation of the topography (Aerts et al., 2022).  Therefore, we recommend using a 

high spatial resolution, e.g. 100 meters. However, the speed of the modelling chain and 

computational demands are leading. A trade-off between the number of model realizations 

and computational demand should be carefully considered.  

3. Modelling chain 

The system would employ multiple conventional hydrological models, but also hydrodynamic 

models to model surface runoff and river flow. In addition, surrogate machine learning 

models (e.g. Sun et al., 2023), statistical approximation of conventional models, can be 

employed to reduce model runtime and computational demand. This has the potential to 

greatly boost the number of model realizations in the ensemble.  

4. Remote sensing integration 

Through data assimilation multiple remote sensing products, such as soil moisture, can be 

integrated in the model ensemble (e.g. Houser et al., 1998; Lievens et al., 2017). This corrects 

the model states in addition to using the most recent rainfall observations during model 

initialization to reduce uncertainty.  

5. Cross-boundary system 

The system needs to surpass political boundaries and encompass the whole cross-boundary 

Meuse basin. For instance, this increases anticipation time for the Rur catchment and fosters 

shared decision-making among different jurisdictions, promoting a unified approach to water 

management.  

6. Platform 

The operational platform would be digital, intuitive, and user-friendly. It would be designed 

for seamless integration with other systems and would have the capability for future 

scalability, ensuring it remains relevant with evolving technological advancements. A widely 

used example of such a system is Delft-FEWS (Werner et al., 2013), for which an FFEWS 

system is integrated based on the findings of this work package.  

7. Users 

Targeted are a wide array of users, from policy-makers and decision-makers to hydrologists 

and environmental engineers. The platform would cater to varied needs depending on the 

level of expertise and offer customization options based on user preferences and 

requirements. 

 

4.5 Ongoing Scientific Developments in Quantitative Precipitation Forecasting 
Here, we provide a brief overview of the ongoing scientific developments in the field of quantitative 

precipitation forecasting (QPF). In the past few years significant advancements have been made, 

driven by both technology and scientific research. Several groundbreaking research papers on QPF 

have been published in renowned journals. Recently a (physics-conditional) deep generative model 

for nowcasting has been proposed by Ravuri et al., 2021 and Zhang et al. (2023). This model uses 

physical principles to contain the statistical nowcasting model, resulting in more plausible forecasts.  

Other studies hold promise in incorporating or replacing numerical models using machine learning. 

Examples are 3D neural networks replacing NWP models (Bi et al., 2023) and machine learning 

models replacing hydrological models under physical constraints (Sun et al., 2023).  

 

In addition, there are technical advances made in earth observations. The Meteosat satellite, 

operated by the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT), 

plays a pivotal role in improving QPF. This satellite has enhanced spatial and temporal resolution, 



 

  

allowing for better tracking of cloud formations and movement. The infrared and water vapor 

sensors are improved that aid in understanding rainfall potential. The produced data is now more 

integrated with ground-based radar systems and weather stations, enhancing the overall prediction 

capability. Other technical advances are based on opportunistic sensing techniques such as the use of 

commercial microwave links necessary for telecommunication to quantify precipitation rates (e.g., 

(de Vos et al., 2018; Heuvelink et al., 2020; Imhoff et al., 2020; Overeem et al., 2021; Uijlenhoet et 

al., 2018). These methods make it possible to complement current observation systems used for e.g. 

nowcasting or to enable these techniques in data-scarce regions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

  

5 Reflection on Project Deliverables 
The core objective of this work package was to evaluate the efficacy of various forecast models 

(specifically Numerical Weather Prediction (NWP), Nowcasting, and Blended Forecasting in predicting 

peak discharge events, using the Peak Anticipation Time (PAT) as a pivotal metric. The ambition is to 

enhance early warning capacities and streamline responses to potential flash flood events. 

 

Activities Undertaken 

To realize this goal, a series of activities were executed: 

• Detailed analysis and comparison of the models, especially with reference to their PAT 

estimates, were conducted across multiple catchments and rainfall events. 

• Extensive ensemble simulations were performed, incorporating 48 realizations, to better 

understand and compare the lead time and consensus on predicting peak discharges. 

• Figures are created to provide a visual summary of the outcomes for each model, rainfall 

event, and catchment. 

 

Results in Context 

The findings provide a comprehensive insight into the relative strengths and limitations of each 

model: 

• Generally, the Blended Forecast model frequently demonstrated advantages over the 

Nowcasting and NWP models, particularly for stratiform rainfall events. 

• The Nowcasting and Blended Forecast models often delivered early warnings, notably in 

scenarios where the NWP model struggled, especially during convective rainfall events. 

• In certain catchments, like the Demer and Dommel, the results highlighted a near-unanimous 

consensus on peak discharge predictions, emphasizing the accuracy and reliability of the 

models used. In addition, this emphasizes the usefulness of Nowcasting techniques in smaller 

catchments. 

 

Next Steps 

To operationalize the beta system: 

• Continued calibration and fine-tuning of the models should be undertaken, based on the 

feedback loops from the results. 

• There should be an increased emphasis on integrating real-time data streams, to further 

improve prediction accuracy. 

• Training sessions and workshops for water managers and other relevant stakeholders should 

be organized, ensuring that they are well-equipped to interpret and act upon the forecasts. 

 

General Reflection 

This project stands as a testament to the power of collaborative research and innovation. Choosing 

Interreg as the platform for this endeavour proved invaluable. This framework fostered cross-border 

collaboration, facilitating the sharing of knowledge, expertise, and best practices. The collective 

effort not only underscored the importance of flash flood early warning systems but also provided a 

new course for the future, pointing towards methodologies that prioritize both accuracy and 

timeliness. 
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Appendix A 
A.1 Contingency Statistics 
The contingency based statistics are based on penalizing and rewarding the forecast models based 

on correct early warnings. The statistics use the ensemble median of the probabilistic Nowcasting 

and Blended Forecast Models. 

 

For each time step it is determined if the reference simulation is or is not within the 90 % to 110 % 

peak discharge threshold, considering the following categories: 

- Hits are registered when both the reference simulation and forecast simulation are within 

the peak discharge threshold.  

- Misses are registered when the reference simulation is within the peak discharge threshold 

but the forecast simulation is not.  

- Correct Negatives are registered when both the reference simulation and the forecast 

simulation are not within the peak discharge threshold. 

- False Alarms are registered when the reference simulation is not within the peak discharge 

threshold but the forecast simulation is. 

 

An overview of the resulting contingency table is provided in Figure A.1. 

 

 
Figure A.1: Contingency table, showing hits occurring with both a “yes” for the reference and forecast 

simulations based on the peak discharge threshold (90 % - 110 %). Misses: “yes” for the reference and “no” for 

the forecast. False alarms: “no” for the reference and “yes” for the forecast. Correct negatives: “no” for the 

reference and "no" for the forecast. 

 

A.2 Hit Rate 
The hit rate or probability of detection ranges from 0 to 1 (perfect score) and answers the question: 

What fraction of the observed “yes” events were correctly forecast?  

 

Mathematically, the hit rate is defined as: 

 

𝐻𝑖𝑡 𝑅𝑎𝑡𝑒 =  
ℎ𝑖𝑡𝑠

ℎ𝑖𝑡𝑠+𝑚𝑖𝑠𝑠𝑒𝑠
    (Eq. 3) 

 



 

  

 
Figure A.2: Heatmap displaying the lead time in hours before peak discharge on the vertical axis. The horizontal 

axis shows the discharge forecast models, with in purple the NWP, in green the Nowcasting, and in orange the 

Blended Forecast models. Hit rate ranges from 0 to 1 (perfect score) in dark blue. The panels show the results 

for the Geul catchment for (a) the stratiform January 2021 event, (b) the convective June 2021 event, and (c) the 

combined July 2021 event.  

 

 



 

  

  
Figure A.3: Heatmap displaying the lead time in hours before peak discharge on the vertical axis. The horizontal 

axis shows the discharge forecast models, with in purple the NWP, in green the Nowcasting, and in orange the 

Blended Forecast models. Hit rate ranges from 0 to 1 (perfect score) in dark blue. The panels show the results 

for the Rur catchment for (a) the stratiform January 2021 event, (b) the convective June 2021 event, and (c) the 

combined July 2021 event.  

 



 

  

  
Figure A.4: Heatmap displaying the lead time in hours before peak discharge on the vertical axis. The horizontal 

axis shows the discharge forecast models, with in purple the NWP, in green the Nowcasting, and in orange the 

Blended Forecast models. Hit rate ranges from 0 to 1 (perfect score) in dark blue. The panels show the results 

for the Demer catchment for (a) the stratiform January 2021 event, (b) the convective June 2021 event, and (c) 

the combined July 2021 event.  

 



 

  

  
Figure A.5: Heatmap displaying the lead time in hours before peak discharge on the vertical axis. The horizontal 

axis shows the discharge forecast models, with in purple the NWP, in green the Nowcasting, and in orange the 

Blended Forecast models. Hit rate ranges from 0 to 1 (perfect score) in dark blue. The panels show the results 

for the Vesdre catchment for (a) the stratiform January 2021 event, (b) the convective June 2021 event, and (c) 

the combined July 2021 event.  

 



 

  

 
Figure A.6: Heatmap displaying the lead time in hours before peak discharge on the vertical axis. The horizontal 

axis shows the discharge forecast models, with in purple the NWP, in green the Nowcasting, and in orange the 

Blended Forecast models. Hit rate ranges from 0 to 1 (perfect score) in dark blue. The panels show the results 

for the Dommel catchment for (a) the stratiform January 2021 event, (b) the convective June 2021 event, and (c) 

the combined July 2021 event.  

 

A.3 False Alarm Ratio 
The false alarm ratio ranges from 0 (perfect score) to 1 and answers the question: What fraction of 

the predicted "yes" events actually did not occur? 

 

Mathematically, the false alarm ratio is defined as: 

 

𝐹𝑎𝑙𝑠𝑒 𝐴𝑙𝑎𝑟𝑚 𝑅𝑎𝑡𝑖𝑜 =  
𝑓𝑎𝑙𝑠𝑒 𝑎𝑙𝑎𝑟𝑚𝑠

ℎ𝑖𝑡𝑠+𝑓𝑎𝑙𝑠𝑒 𝑎𝑙𝑎𝑟𝑚𝑠
    (Eq. 4) 

 



 

  

 
Figure A.7: Heatmap displaying the lead time in hours before peak discharge on the vertical axis. The horizontal 

axis shows the discharge forecast models, with in purple the NWP, in green the Nowcasting, and in orange the 

Blended Forecast models. False alarm ratio ranges from 0 (perfect score) in dark blue to 1. The panels show the 

results for the Geul catchment for (a) the stratiform January 2021 event, (b) the convective June 2021 event, 

and (c) the combined July 2021 event.  

 

 

 

 

 



 

  

 
Figure A.8: Heatmap displaying the lead time in hours before peak discharge on the vertical axis. The horizontal 

axis shows the discharge forecast models, with in purple the NWP, in green the Nowcasting, and in orange the 

Blended Forecast models. False alarm ratio ranges from 0 (perfect score) in dark blue to 1. The panels show the 

results for the Rur catchment for (a) the stratiform January 2021 event, (b) the convective June 2021 event, and 

(c) the combined July 2021 event.  

 



 

  

 
Figure A.9: Heatmap displaying the lead time in hours before peak discharge on the vertical axis. The horizontal 

axis shows the discharge forecast models, with in purple the NWP, in green the Nowcasting, and in orange the 

Blended Forecast models. False alarm ratio ranges from 0 (perfect score) in dark blue to 1. The panels show the 

results for the Demer catchment for (a) the stratiform January 2021 event, (b) the convective June 2021 event, 

and (c) the combined July 2021 event.  

 



 

  

 
Figure A.10: Heatmap displaying the lead time in hours before peak discharge on the vertical axis. The 

horizontal axis shows the discharge forecast models, with in purple the NWP, in green the Nowcasting, and in 

orange the Blended Forecast models. False alarm ratio ranges from 0 (perfect score) in dark blue to 1. The 

panels show the results for the Vesdre catchment for (a) the stratiform January 2021 event, (b) the convective 

June 2021 event, and (c) the combined July 2021 event.  

 



 

  

 
Figure A.11: Heatmap displaying the lead time in hours before peak discharge on the vertical axis. The 

horizontal axis shows the discharge forecast models, with in purple the NWP, in green the Nowcasting, and in 

orange the Blended Forecast models. False alarm ratio ranges from 0 (perfect score) in dark blue to 1. The 

panels show the results for the Dommel catchment for (a) the stratiform January 2021 event, (b) the convective 

June 2021 event, and (c) the combined July 2021 event.  

 

 

A.4 Success Ratio 
The success ratio ranges from 0 to 1 (perfect score) and answers the question: What fraction of the 

forecast "yes" events were correctly observed? 

 

Mathematically, the success ratio is defined as: 

 

𝑆𝑢𝑐𝑐𝑒𝑠𝑠 𝑅𝑎𝑡𝑖𝑜 =  
ℎ𝑖𝑡𝑠

ℎ𝑖𝑡𝑠+𝑓𝑎𝑙𝑠𝑒 𝑎𝑙𝑎𝑟𝑚𝑠
    (Eq. 5) 



 

  

 
Figure A.12: Heatmap displaying the lead time in hours before peak discharge on the vertical axis. The 

horizontal axis shows the discharge forecast models, with in purple the NWP, in green the Nowcasting, and in 

orange the Blended Forecast models. Success ratio ranges from 0 to 1 (perfect score) in dark blue. The panels 

show the results for the Geul catchment for (a) the stratiform January 2021 event, (b) the convective June 2021 

event, and (c) the combined July 2021 event.  

 



 

  

 
Figure A.13: Heatmap displaying the lead time in hours before peak discharge on the vertical axis. The 

horizontal axis shows the discharge forecast models, with in purple the NWP, in green the Nowcasting, and in 

orange the Blended Forecast models. Success ratio ranges from 0 to 1 (perfect score) in dark blue. The panels 

show the results for the Rur catchment for (a) the stratiform January 2021 event, (b) the convective June 2021 

event, and (c) the combined July 2021 event.  

 



 

  

 
Figure A.14: Heatmap displaying the lead time in hours before peak discharge on the vertical axis. The 

horizontal axis shows the discharge forecast models, with in purple the NWP, in green the Nowcasting, and in 

orange the Blended Forecast models. Success ratio ranges from 0 to 1 (perfect score) in dark blue. The panels 

show the results for the Demer catchment for (a) the stratiform January 2021 event, (b) the convective June 

2021 event, and (c) the combined July 2021 event.  

 



 

  

 
Figure A.15: Heatmap displaying the lead time in hours before peak discharge on the vertical axis. The 

horizontal axis shows the discharge forecast models, with in purple the NWP, in green the Nowcasting, and in 

orange the Blended Forecast models. Success ratio ranges from 0 to 1 (perfect score) in dark blue. The panels 

show the results for the Vesdre catchment for (a) the stratiform January 2021 event, (b) the convective June 

2021 event, and (c) the combined July 2021 event.  

 



 

  

 
Figure A.16: Heatmap displaying the lead time in hours before peak discharge on the vertical axis. The 

horizontal axis shows the discharge forecast models, with in purple the NWP, in green the Nowcasting, and in 

orange the Blended Forecast models. Success ratio ranges from 0 to 1 (perfect score) in dark blue. The panels 

show the results for the Dommel catchment for (a) the stratiform January 2021 event, (b) the convective June 

2021 event, and (c) the combined July 2021 event.  
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